ﻻ يوجد ملخص باللغة العربية
Interface states in photonic crystals (PCs) have attracted attention for the special properties, such as high transmission efficiency in bend waveguides, and their generation related to the topological phase. Previous works on interface states in PCs were mainly based on the square lattice, the honeycomb lattice or the triangular lattice, but with different materials, shapes, or sizes of rods resulting in the complicated structure. In this paper, an interface is constructed by two 2D PCs with different rectangular lattices, but the same materials, shapes, and sizes of dielectric rods, which generates interface states. The interface states are analyzed with respect to Zak phases and surface impedances. The retainability of the interface states in rectangular lattice PCs is investigated by studying the relationship between the length-width ratio of the rectangular lattice and the Zak phase. It is found that, when the interface states are generated by changing the length-width ratio of the rectangular lattice, the retainability of the interface states is related to the positions of the photonic bandgaps or the Zak phases of the bands. A more detailed examination indicates that these conclusions are applicable to the rectangular lattice PCs with other materials, shapes, and sizes of dielectric rods. These results can lead to new ways to generate interface states easily, with only one kind of dielectric rod. In addition, these outcomes may contribute to the understanding of the relationship between the geometry and the interface state.
Electromagnetic topological insulators have been explored extensively due to the robust edge states they support. In this work, we propose a topological electromagnetic system based on a line defect in topologically nontrivial photonic crystals (PCs)
In this paper, the photonic quantum spin Hall effect (PQSHE) is realized in dielectric two-dimensional (2D) honeycomb lattice photonic crystal (PC) by stretching and shrinking the honeycomb unit cell. Combining two honeycomb lattice PCs with a common
In this work, a refractive index (RI) sensor with an effective integration of colorimetric detection and optical sensing capabilities has been developed. Colorimetric detection relies on the sensitivity of the structural color of photonic crystal (PC
Weyl points are the degenerate points in three-dimensional momentum space with nontrivial topological phase, which are usually realized in classical system with structure and symmetry designs. Here we proposed a one-dimensional layer-stacked photonic
We describe a smooth transition from (fully ordered) photonic crystal to (fully disordered) photonic glass that enables us to make an accurate measurement of the scattering mean free path in nanostructured media and, in turn, establishes the dominant