ﻻ يوجد ملخص باللغة العربية
This paper presents the design, implementation and evaluation of milliMap, a single-chip millimetre wave (mmWave) radar based indoor mapping system targetted towards low-visibility environments to assist in emergency response. A unique feature of milliMap is that it only leverages a low-cost, off-the-shelf mmWave radar, but can reconstruct a dense grid map with accuracy comparable to lidar, as well as providing semantic annotations of objects on the map. milliMap makes two key technical contributions. First, it autonomously overcomes the sparsity and multi-path noise of mmWave signals by combining cross-modal supervision from a co-located lidar during training and the strong geometric priors of indoor spaces. Second, it takes the spectral response of mmWave reflections as features to robustly identify different types of objects e.g. doors, walls etc. Extensive experiments in different indoor environments show that milliMap can achieve a map reconstruction error less than 0.2m and classify key semantics with an accuracy around 90%, whilst operating through dense smoke.
Millimeter-wave (mmW) radars are being increasingly integrated in commercial vehicles to support new Adaptive Driver Assisted Systems (ADAS) for its ability to provide high accuracy location, velocity, and angle estimates of objects, largely independ
Robust indoor ego-motion estimation has attracted significant interest in the last decades due to the fast-growing demand for location-based services in indoor environments. Among various solutions, frequency-modulated continuous-wave (FMCW) radar se
Digital maps will revolutionize our experience of perceiving and navigating indoor environments. While today we rely only on the representation of the outdoors, the mapping of indoors is mainly a part of the traditional SLAM problem where robots disc
Millimeter-wave (mmWave) and terahertz (THz) spectrum can support significantly higher data rates compared to lower frequency bands and hence are being actively considered for 5G wireless networks and beyond. These bands have high free-space path los
In multimodal traffic monitoring, we gather traffic statistics for distinct transportation modes, such as pedestrians, cars and bicycles, in order to analyze and improve peoples daily mobility in terms of safety and convenience. On account of its rob