ﻻ يوجد ملخص باللغة العربية
The color code is a topological quantum error-correcting code supporting a variety of valuable fault-tolerant logical gates. Its two-dimensional version, the triangular color code, may soon be realized with currently available superconducting hardware despite constrained qubit connectivity. To guide this experimental effort, we study the storage threshold of the triangular color code against circuit-level depolarizing noise. First, we adapt the Restriction Decoder to the setting of the triangular color code and to phenomenological noise. Then, we propose a fault-tolerant implementation of the stabilizer measurement circuits, which incorporates flag qubits. We show how information from flag qubits can be used with the Restriction Decoder to maintain the effective distance of the code. We numerically estimate the threshold of the triangular color code to be 0.2%, which is competitive with the thresholds of other topological quantum codes. We also prove that 1-flag stabilizer measurement circuits are sufficient to preserve the full code distance, which may be used to find simpler syndrome extraction circuits of the color code.
In this work we introduce two code families, which we call the heavy hexagon code and heavy square code. Both code families are implemented by assigning physical data and ancilla qubits to both vertices and edges of low degree graphs. Such a layout i
We show how to perform a fault-tolerant universal quantum computation in 2D architectures using only transversal unitary operators and local syndrome measurements. Our approach is based on a doubled version of the 2D color code. It enables a transver
We provide a systematic way of constructing entanglement-assisted quantum error-correcting codes via graph states in the scenario of preexisting perfectly protected qubits. It turns out that the preexisting entanglement can help beat the quantum Hamm
In 1965, E. C. Zeeman proved that the (+/-)-twist spin of any knotted sphere in (n-1)-space is unknotted in the n-sphere. In 1991, Y. Marumoto and Y. Nakanishi gave an alternate proof of Zeemans theorem by using the moving picture method. In this pap
We present a family of quantum error-correcting codes that support a universal set of transversal logic gates using only local operations on a two-dimensional array of physical qubits. The construction is a subsystem version of color codes where gaug