ﻻ يوجد ملخص باللغة العربية
We present a family of quantum error-correcting codes that support a universal set of transversal logic gates using only local operations on a two-dimensional array of physical qubits. The construction is a subsystem version of color codes where gauge fixing through local measurements dynamically determines which gates are transversal. Although the operations are local, the underlying code is not topological in structure, which is how the construction circumvents no-go constraints imposed by the Bravyi-Konig and Pastawski-Yoshida theorems. We provide strong evidence that the encoding has no error threshold in the conventional sense, though it is still possible to have logical gates with error probability much lower than that of physical gates.
We show how to perform a fault-tolerant universal quantum computation in 2D architectures using only transversal unitary operators and local syndrome measurements. Our approach is based on a doubled version of the 2D color code. It enables a transver
The gauge glass model offers an interesting example of a randomly frustrated system with a continuous O(2) symmetry. In two dimensions, the existence of a glass phase at low temperatures has long been disputed among numerical studies. To resolve this
Topological color codes defined by the 4.8.8 semiregular lattice feature geometrically local check operators and admit transversal implementation of the entire Clifford group, making them promising candidates for fault-tolerant quantum computation. R
The color code is a topological quantum error-correcting code supporting a variety of valuable fault-tolerant logical gates. Its two-dimensional version, the triangular color code, may soon be realized with currently available superconducting hardwar
The quantum Rabi model is a widespread description for the coupling between a two-level system and a quantized single mode of an electromagnetic resonator. Issues about this models gauge invariance have been raised. These issues become evident when t