ترغب بنشر مسار تعليمي؟ اضغط هنا

Obstructions for bounded shrub-depth and rank-depth

70   0   0.0 ( 0 )
 نشر من قبل O-Joung Kwon
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Shrub-depth and rank-depth are dense analogues of the tree-depth of a graph. It is well known that a graph has large tree-depth if and only if it has a long path as a subgraph. We prove an analogous statement for shrub-depth and rank-depth, which was conjectured by Hlinv{e}ny, Kwon, Obdrv{z}alek, and Ordyniak [Tree-depth and vertex-minors, European J.~Combin. 2016]. Namely, we prove that a graph has large rank-depth if and only if it has a vertex-minor isomorphic to a long path. This implies that for every integer $t$, the class of graphs with no vertex-minor isomorphic to the path on $t$ vertices has bounded shrub-depth.

قيم البحث

اقرأ أيضاً

DeVos, Kwon, and Oum introduced the concept of branch-depth of matroids as a natural analogue of tree-depth of graphs. They conjectured that a matroid of sufficiently large branch-depth contains the uniform matroid $U_{n,2n}$ or the cycle matroid of a large fan graph as a minor. We prove that matroids with sufficiently large branch-depth either contain the cycle matroid of a large fan graph as a minor or have large branch-width. As a corollary, we prove their conjecture for matroids representable over a fixed finite field and quasi-graphic matroids, where the uniform matroid is not an option.
We characterize classes of graphs closed under taking vertex-minors and having no $P_n$ and no disjoint union of $n$ copies of the $1$-subdivision of $K_{1,n}$ for some $n$. Our characterization is described in terms of a tree of radius $2$ whose lea ves are labelled by the vertices of a graph $G$, and the width is measured by the maximum possible cut-rank of a partition of $V(G)$ induced by splitting an internal node of the tree to make two components. The minimum width possible is called the depth-$2$ rank-brittleness of $G$. We prove that for all $n$, every graph with sufficiently large depth-$2$ rank-brittleness contains $P_n$ or disjoint union of $n$ copies of the $1$-subdivision of $K_{1,n}$ as a vertex-minor.
245 - M. B. Hastings 2019
We consider some classical and quantum approximate optimization algorithms with bounded depth. First, we define a class of local classical optimization algorithms and show that a single step version of these algorithms can achieve the same performanc e as the single step QAOA on MAX-3-LIN-2. Second, we show that this class of classical algorithms generalizes a class previously considered in the literature, and also that a single step of the classical algorithm will outperform the single-step QAOA on all triangle-free MAX-CUT instances. In fact, for all but $4$ choices of degree, existing single-step classical algorithms already outperform the QAOA on these graphs, while for the remaining $4$ choices we show that the generalization here outperforms it. Finally, we consider the QAOA and provide strong evidence that, for any fixed number of steps, its performance on MAX-3-LIN-2 on bounded degree graphs cannot achieve the same scaling as can be done by a class of global classical algorithms. These results suggest that such local classical algorithms are likely to be at least as promising as the QAOA for approximate optimization.
118 - Nitin Saxena , C. Seshadhri 2008
We show that the rank of a depth-3 circuit (over any field) that is simple, minimal and zero is at most k^3log d. The previous best rank bound known was 2^{O(k^2)}(log d)^{k-2} by Dvir and Shpilka (STOC 2005). This almost resolves the rank question f irst posed by Dvir and Shpilka (as we also provide a simple and minimal identity of rank Omega(klog d)). Our rank bound significantly improves (dependence on k exponentially reduced) the best known deterministic black-box identity tests for depth-3 circuits by Karnin and Shpilka (CCC 2008). Our techniques also shed light on the factorization pattern of nonzero depth-3 circuits, most strikingly: the rank of linear factors of a simple, minimal and nonzero depth-3 circuit (over any field) is at most k^3log d. The novel feature of this work is a new notion of maps between sets of linear forms, called ideal matchings, used to study depth-3 circuits. We prove interesting structural results about depth-3 identities using these techniques. We believe that these can lead to the goal of a deterministic polynomial time identity test for these circuits.
Tree-width and its linear variant path-width play a central role for the graph minor relation. In particular, Robertson and Seymour (1983) proved that for every tree~$T$, the class of graphs that do not contain $T$ as a minor has bounded path-width. For the pivot-minor relation, rank-width and linear rank-width take over the role from tree-width and path-width. As such, it is natural to examine if for every tree~$T$, the class of graphs that do not contain $T$ as a pivot-minor has bounded linear rank-width. We first prove that this statement is false whenever $T$ is a tree that is not a caterpillar. We conjecture that the statement is true if $T$ is a caterpillar. We are also able to give partial confirmation of this conjecture by proving: (1) for every tree $T$, the class of $T$-pivot-minor-free distance-hereditary graphs has bounded linear rank-width if and only if $T$ is a caterpillar; (2) for every caterpillar $T$ on at most four vertices, the class of $T$-pivot-minor-free graphs has bounded linear rank-width. To prove our second result, we only need to consider $T=P_4$ and $T=K_{1,3}$, but we follow a general strategy: first we show that the class of $T$-pivot-minor-free graphs is contained in some class of $(H_1,H_2)$-free graphs, which we then show to have bounded linear rank-width. In particular, we prove that the class of $(K_3,S_{1,2,2})$-free graphs has bounded linear rank-width, which strengthens a known result that this graph class has bounded rank-width.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا