ﻻ يوجد ملخص باللغة العربية
We study the consequences of the $Z_2$-symmetry behind the $mu$--$tau$ universality in neutrino mass matrix. We then implement this symmetry in the type-I seesaw mechanism and show how it can accommodate all sorts of lepton mass hierarchies and generate enough lepton asymmetry to interpret the observed baryon asymmetry in the universe. We also show how a specific form of a high-scale perturbation is kept when translated via the seesaw into the low scale domain, where it can accommodate the neutrino mixing data. We finally present a realization of the high scale perturbed texture through addition of matter and extra exact symmetries.
We study a $mu - tau$ reflection symmetry in neutrino sector realized at the GUT scale in the context of the seesaw model. In our scenario, the exact $mu - tau$ reflection symmetry realized in the basis where the charged lepton and heavy Majorana mas
We investigate the consequences of $mu-tau$ reflection symmetry in presence of a light sterile neutrino for the $3+1$ neutrino mixing scheme. We discuss the implications of total $mu-tau$ reflection symmetry as well partial $mu-tau$ reflection symmet
Motivated by the recent results from Daya Bay, Reno and Double Chooz Collaborations, we study the consequences of small departures from exact $mu-tau$ symmetry in the neutrino sector, to accommodate a non-vanishing value of the element $V_{e3}$ from
Nonstandard interactions (NSIs), possible subleading effects originating from new physics beyond the Standard Model, may affect the propagation of neutrinos and eventually contribute to measurements of neutrino oscillations. Besides this, $ mu-tau $
We discuss the viability of the $mu$--$tau$ interchange symmetry imposed on the neutrino mass matrix in the flavor space. Whereas the exact symmetry is shown to lead to textures of completely degenerate spectrum which is incompatible with the neutrin