ﻻ يوجد ملخص باللغة العربية
A deterministic finite automaton is synchronizing if there exists a word that sends all states of the automaton to the same state. v{C}erny conjectured in 1964 that a synchronizing automaton with $n$ states has a synchronizing word of length at most $(n-1)^2$. We introduce the notion of aperiodically $1-$contracting automata and prove that in these automata all subsets of the state set are reachable, so that in particular they are synchronizing. Furthermore, we give a sufficient condition under which the v{C}erny conjecture holds for aperiodically $1-$contracting automata. As a special case, we prove some results for circular automata.
In this paper, we show that every D3-directing CNFA can be mapped uniquely to a DFA with the same synchronizing word length. This implies that v{C}ernys conjecture generalizes to CNFAs and that the general upper bound for the length of a shortest D3-
We use a weight-preserving, sign-reversing involution to find a combinatorial expansion of $Delta_{e_k} e_n$ at $q=1$ in terms of the elementary symmetric function basis. We then use a weight-preserving bijection to prove the Delta Conjecture at $q=1
Controller synthesis for general linear temporal logic (LTL) objectives is a challenging task. The standard approach involves translating the LTL objective into a deterministic parity automaton (DPA) by means of the Safra-Piterman construction. One o
We introduce a way to parameterize automata and games on finite graphs with natural numbers. The parameters are accessed essentially by allowing counting down from the parameter value to 0 and branching depending on whether 0 has been reached. The ma
Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted monadic second order logic WMSOL with weights in S. They use a syntactic fragment RMSOL of WMSOL to characterize word functions (power series) recognizable by w