ترغب بنشر مسار تعليمي؟ اضغط هنا

4-Manifold Invariants From Hopf Algebras

146   0   0.0 ( 0 )
 نشر من قبل Julian Chaidez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kuperberg invariant is a topological invariant of closed 3-manifolds based on finite-dimensional Hopf algebras. In this paper, we initiate the program of constructing 4-manifold invariants in the spirit of Kuperbergs 3-manifold invariant. We utilize a structure called a Hopf triplet, which consists of three Hopf algebras and a bilinear form on each pair subject to certain compatibility conditions. In our construction, we present 4-manifolds by their trisection diagrams, a four-dimensional analog of Heegaard diagrams. The main result is that every Hopf triplet yields a diffeomorphism invariant of closed 4-manifolds. In special cases, our invariant reduces to Crane-Yetter invariants and generalized dichromatic invariants, and conjecturally Kashaevs invariant. As a starting point, we assume that the Hopf algebras involved in the Hopf triplets are semisimple. We speculate that relaxing semisimplicity will lead to even richer invariants.



قيم البحث

اقرأ أيضاً

We propose a way of computing 4-manifold invariants, old and new, as chiral correlation functions in half-twisted 2d $mathcal{N}=(0,2)$ theories that arise from compactification of fivebranes. Such formulation gives a new interpretation of some known statements about Seiberg-Witten invariants, such as the basic class condition, and gives a prediction for structural properties of the multi-monopole invariants and their non-abelian generalizations.
We prove a 20-year-old conjecture concerning two quantum invariants of three manifolds that are constructed from finite dimensional Hopf algebras, namely, the Kuperberg invariant and the Hennings-Kauffman-Radford invariant. The two invariants can be viewed as a non-semisimple generalization of the Turaev-Viro-Barrett-Westbury $(text{TVBW})$ invariant and the Witten-Reshetikhin-Turaev $(text{WRT})$ invariant, respectively. By a classical result relating $text{TVBW}$ and $text{WRT}$, it follows that the Kuperberg invariant for a semisimple Hopf algebra is equal to the Hennings-Kauffman-Radford invariant for the Drinfeld double of the Hopf algebra. However, whether the relation holds for non-semisimple Hopf algebras has remained open, partly because the introduction of framings in this case makes the Kuperberg invariant significantly more complicated to handle. We give an affirmative answer to this question. An important ingredient in the proof involves using a special Heegaard diagram in which one family of circles gives the surgery link of the three manifold represented by the Heegaard diagram.
We provide a physical definition of new homological invariants $mathcal{H}_a (M_3)$ of 3-manifolds (possibly, with knots) labeled by abelian flat connections. The physical system in question involves a 6d fivebrane theory on $M_3$ times a 2-disk, $D^ 2$, whose Hilbert space of BPS states plays the role of a basic building block in categorification of various partition functions of 3d $mathcal{N}=2$ theory $T[M_3]$: $D^2times S^1$ half-index, $S^2times S^1$ superconformal index, and $S^2times S^1$ topologically twisted index. The first partition function is labeled by a choice of boundary condition and provides a refinement of Chern-Simons (WRT) invariant. A linear combination of them in the unrefined limit gives the analytically continued WRT invariant of $M_3$. The last two can be factorized into the product of half-indices. We show how this works explicitly for many examples, including Lens spaces, circle fibrations over Riemann surfaces, and plumbed 3-manifolds.
Let $W$ be a Coxeter group. The goal of the paper is to construct new Hopf algebras that contain Hecke algebras $H_{bf q}(W)$ as (left) coideal subalgebras. Our Hecke-Hopf algebras ${bf H}(W)$ have a number of applications. In particular they provide new solutions of quantum Yang-Baxter equation and lead to a construction of a new family of endo-functors of the category of $H_{bf q}(W)$-modules. Hecke-Hopf algebras for the symmetric group are related to Fomin-Kirillov algebras, for an arbitrary Coxeter group $W$ the Demazure part of ${bf H}(W)$ is being acted upon by generalized braided derivatives which generate the corresponding (generalized) Nichols algebra.
We show that the definition of unrolled Hopf algebras can be naturally extended to the Nichols algebra $mathcal{B}$ of a Yetter-Drinfeld module $V$ on which a Lie algebra $mathfrak g$ acts by biderivations. Specializing to Nichols algebras of diagonal type, we find unroll
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا