ﻻ يوجد ملخص باللغة العربية
We provide a physical definition of new homological invariants $mathcal{H}_a (M_3)$ of 3-manifolds (possibly, with knots) labeled by abelian flat connections. The physical system in question involves a 6d fivebrane theory on $M_3$ times a 2-disk, $D^2$, whose Hilbert space of BPS states plays the role of a basic building block in categorification of various partition functions of 3d $mathcal{N}=2$ theory $T[M_3]$: $D^2times S^1$ half-index, $S^2times S^1$ superconformal index, and $S^2times S^1$ topologically twisted index. The first partition function is labeled by a choice of boundary condition and provides a refinement of Chern-Simons (WRT) invariant. A linear combination of them in the unrefined limit gives the analytically continued WRT invariant of $M_3$. The last two can be factorized into the product of half-indices. We show how this works explicitly for many examples, including Lens spaces, circle fibrations over Riemann surfaces, and plumbed 3-manifolds.
We propose a way of computing 4-manifold invariants, old and new, as chiral correlation functions in half-twisted 2d $mathcal{N}=(0,2)$ theories that arise from compactification of fivebranes. Such formulation gives a new interpretation of some known
Motivated by physical constructions of homological knot invariants, we study their analogs for closed 3-manifolds. We show that fivebrane compactifications provide a universal description of various old and new homological invariants of 3-manifolds.
The Kuperberg invariant is a topological invariant of closed 3-manifolds based on finite-dimensional Hopf algebras. In this paper, we initiate the program of constructing 4-manifold invariants in the spirit of Kuperbergs 3-manifold invariant. We util
We introduce supergroup analogues of 3-manifold invariants $hat{Z}$, also known as homological blocks, which were previously considered for ordinary compact semisimple Lie groups. We focus on superunitary groups, and work out the case of SU(2|1) in d
Many BPS partition functions depend on a choice of additional structure: fluxes, Spin or Spin$^c$ structures, etc. In a context where the BPS generating series depends on a choice of Spin$^c$ structure we show how different limits with respect to the