ﻻ يوجد ملخص باللغة العربية
We study the role of charge density-wave fluctuations on the temperature dependence of Seebeck coefficient in quasi-one dimensional conductors with a Peierls instability. The description of low-dimensional incommensurate charge density-wave fluctuations as obtained by a generalized Ginzburg-Landau approach for arrays of weakly coupled chains is embodied in the numerical solution of the semi-classical Boltzmann transport equation. The energy and temperature dependence of the scattering time of electrons on fluctuations can then be extracted and its influence on the Seebeck coefficient calculated. The connexion between theory and experiments carried out on molecular conductors is presented and critically discussed.
We study the influence of inelastic electron-electron scattering on the temperature variation of the Seebeck coefficient in the normal phase of quasi-one-dimensional organic superconductors. The theory is based on the numerical solution of the semi-c
We report the observation of a two-dimensional (2D) checkerboard charge density wave (CDW) in the low-dimensional superconductor Ta4Pd3Te16. By determining its CDW properties across the temperature-pressure (T-P) phase diagram and comparing with prot
We report on a Raman scattering investigation of the charge-density-wave (CDW), quasi two-dimensional rare-earth tri-tellurides $R$Te$_3$ ($R$= La, Ce, Pr, Nd, Sm, Gd and Dy) at ambient pressure, and of LaTe$_3$ and CeTe$_3$ under externally applied
We study the Holstein model of spinless fermions, which at half-filling exhibits a quantum phase transition from a metallic Tomonaga-Luttinger liquid phase to an insulating charge-density-wave (CDW) phase at a critical electron-phonon coupling streng
We investigate the spin Seebeck coefficient $S_s$ in the square lattice Hubbard model at high temperatures of relevance to cold-atom measurements. We solve the model with the finite-temperature Lanczos and with the dynamical mean-field theory methods