ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven model for hydraulic fracturing design optimization: focus on building digital database and production forecast

61   0   0.0 ( 0 )
 نشر من قبل Andrei Osiptsov
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Growing amount of hydraulic fracturing (HF) jobs in the recent two decades resulted in a significant amount of measured data available for development of predictive models via machine learning (ML). In multistage fractured completions, post-fracturing production analysis reveals that different stages produce very non-uniformly due to a combination of geomechanics and fracturing design factors. Hence, there is a significant room for improvement of current design practices. The workflow is essentially split into two stages. As a result of the first stage, the present paper summarizes the efforts into the creation of a digital database of field data from several thousands of multistage HF jobs on wells from circa 20 different oilfields in Western Siberia, Russia. In terms of the number of points (fracturing jobs), the present database is a rare case of a representative dataset of about 5000 data points. Each point in the data base contains the vector of 92 input variables (the reservoir, well and the frac design parameters) and the vector of production data, which is characterized by 16 parameters, including the target, cumulative oil production. Data preparation has been done using various ML techniques: the problem of missing values in the database is solved with collaborative filtering for data imputation; outliers are removed using visualisation of cluster data structure by t-SNE algorithm. The production forecast problem is solved via CatBoost algorithm. Prediction capability of the model is measured with the coefficient of determination (R^2) and reached 0.815. The inverse problem (selecting an optimum set of fracturing design parameters to maximize production) will be considered in the second part of the study to be published in another paper, along with a recommendation system for advising DESC and production stimulation engineers on an optimized fracturing design.

قيم البحث

اقرأ أيضاً

Applying security as a lifecycle practice is becoming increasingly important to combat targeted attacks in safety-critical systems. Among others there are two significant challenges in this area: (1) the need for models that can characterize a realis tic system in the absence of an implementation and (2) an automated way to associate attack vector information; that is, historical data, to such system models. We propose the cybersecurity body of knowledge (CYBOK), which takes in sufficiently characteristic models of systems and acts as a search engine for potential attack vectors. CYBOK is fundamentally an algorithmic approach to vulnerability exploration, which is a significant extension to the body of knowledge it builds upon. By using CYBOK, security analysts and system designers can work together to assess the overall security posture of systems early in their lifecycle, during major design decisions and before final product designs. Consequently, assisting in applying security earlier and throughout the systems lifecycle.
As people spend up to 87% of their time indoors, intelligent Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings are essential for maintaining occupant comfort and reducing energy consumption. These HVAC systems in smart buildings rely on real-time sensor readings, which in practice often suffer from various faults and could also be vulnerable to malicious attacks. Such faulty sensor inputs may lead to the violation of indoor environment requirements (e.g., temperature, humidity, etc.) and the increase of energy consumption. While many model-based approaches have been proposed in the literature for building HVAC control, it is costly to develop accurate physical models for ensuring their performance and even more challenging to address the impact of sensor faults. In this work, we present a novel learning-based framework for sensor fault-tolerant HVAC control, which includes three deep learning based components for 1) generating temperature proposals with the consideration of possible sensor faults, 2) selecting one of the proposals based on the assessment of their accuracy, and 3) applying reinforcement learning with the selected temperature proposal. Moreover, to address the challenge of training data insufficiency in building-related tasks, we propose a model-assisted learning method leveraging an abstract model of building physical dynamics. Through extensive experiments, we demonstrate that the proposed fault-tolerant HVAC control framework can significantly reduce building temperature violations under a variety of sensor fault patterns while maintaining energy efficiency.
Building energy management is one of the core problems in modern power grids to reduce energy consumption while ensuring occupants comfort. However, the building energy management system (BEMS) is now facing more challenges and uncertainties with the increasing penetration of renewables and complicated interactions between humans and buildings. Classical model predictive control (MPC) has shown its capacity to reduce building energy consumption, but it suffers from labor-intensive modelling and complex on-line control optimization. Recently, with the growing accessibility to the building control and automation data, data-driven solutions have attracted more research interest. This paper presents a compact review of the recent advances in data-driven MPC and reinforcement learning based control methods for BEMS. The main challenges in these approaches and insights on the selection of a control method are discussed.
Understanding the models that characterize the thermal dynamics in a smart building is important for the comfort of its occupants and for its energy optimization. A significant amount of research has attempted to utilize thermodynamics (physical) mod els for smart building control, but these approaches remain challenging due to the stochastic nature of the intermittent environmental disturbances. This paper presents a novel data-driven approach for indoor thermal model inference, which combines an Autoregressive Moving Average with eXogenous inputs model (ARMAX) with a Normalized Mutual Information scheme (NMI). Based on this information-theoretic method, NMI, causal dependencies between the indoor temperature and exogenous inputs are explicitly obtained as a guideline for the ARMAX model to find the dominating inputs. For validation, we use three datasets based on building energy systems-against which we compare our method to an autoregressive model with exogenous inputs (ARX), a regularized ARMAX model, and state-space models.
This work proposes a novel Energy-Aware Network Operator Search (ENOS) approach to address the energy-accuracy trade-offs of a deep neural network (DNN) accelerator. In recent years, novel inference operators have been proposed to improve the computa tional efficiency of a DNN. Augmenting the operators, their corresponding novel computing modes have also been explored. However, simplification of DNN operators invariably comes at the cost of lower accuracy, especially on complex processing tasks. Our proposed ENOS framework allows an optimal layer-wise integration of inference operators and computing modes to achieve the desired balance of energy and accuracy. The search in ENOS is formulated as a continuous optimization problem, solvable using typical gradient descent methods, thereby scalable to larger DNNs with minimal increase in training cost. We characterize ENOS under two settings. In the first setting, for digital accelerators, we discuss ENOS on multiply-accumulate (MAC) cores that can be reconfigured to different operators. ENOS training methods with single and bi-level optimization objectives are discussed and compared. We also discuss a sequential operator assignment strategy in ENOS that only learns the assignment for one layer in one training step, enabling greater flexibility in converging towards the optimal operator allocations. Furthermore, following Bayesian principles, a sampling-based variational mode of ENOS is also presented. ENOS is characterized on popular DNNs ShuffleNet and SqueezeNet on CIFAR10 and CIFAR100.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا