ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-dielectric coupling and non-ergodic electrical behaviour in hexagonal Sr0.6Ba0.4MnO3 via local strain driven magnetic ordering

230   0   0.0 ( 0 )
 نشر من قبل Anand Awasthi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The crystal structure of hexagonal-Sr0.6Ba0.4MnO3 allows various competing superexchange interactions, leading to intriguing magnetic properties. Local structural changes modify overlapping between Mn and oxygen ions with temperature. Calculations based on our model spin-Hamiltonian reveal that the dominant linear antiferromagnetic superexchange interaction between the oxygen-linked Mn4+ ions results in short range correlations (SRC), manifesting a smooth drop in magnetization below 325K. Dominance of superexchange interaction changes its allegiance towards the non-linear oxygen-linked Mn-O-Mn interactions, onsetting long-range correlations (LRC) below 225K. Below the SRC-LRC crossover temperature, electrical response arising from the interacting dipoles exhibits power-law divergent behaviour of relaxation time, upon cooling. Non-ergodic character of the dipole-cluster glass state is examined via the indispensable aging and rejuvenation effects, similar to the spin glasses. Competitive-frustration among spin-exchange and local-strain is reckoned as responsible for the electrical glass origin.

قيم البحث

اقرأ أيضاً

Hexagonal Sr0.6Ba0.4MnO3 (SBMO) follows P63/mmc symmetry where MnO6 octahedra are both face-shared (Mn2O9 bi-octahedra) and corner-shared via oxygen anion. It undergoes ferroelectric (FE) and antiferromagnetic (AFM) orderings close to the room temper ature. Magnetic properties appear to be governed by intricate exchange interactions among Mn4+ ions within and in adjacent Mn2O9 bi-octahedra, contingent upon the local structural changes. Calculations based on our model spin-Hamiltonian reveal that the dominant linear AFM fluctuations between the Mn4+ ions of two oxygen-linked bi-octahedra result in short range correlations, manifest as a smooth drop in magnetization below 325 K. Competition between spin-exchange and local-strain is reckoned as responsible for the atypical magneto-electricity, obtained near the room temperature.
We show that using epitaxial strain and chemical pressure in orthorhombic YMnO3 and Co-substituted (YMn0.95Co0.05O3) thin films, a ferromagnetic response can be gradually introduced and tuned. These results, together with the measured anisotropy of t he magnetic response, indicate that the unexpected observation of ferromagnetism in orthorhombic o-RMnO3 (R= Y, Ho, Tb, etc) films originates from strain-driven breaking of the fully compensated magnetic ordering by pushing magnetic moments away from the antiferromagnetic [010] axis. We show that the resulting canting angle and the subsequent ferromagnetic response, gradually increase (up to ~ 1.2degree) by compression of the unit cell. We will discuss the relevance of these findings, in connection to the magnetoelectric response of orthorhombic manganites.
We have investigated the magnetic ordering in the ultrathin c(10$times$2) CoO(111) film supported on Ir(100) on the basis of ab-initio calculations. We find a close relationship between the local structural properties of the oxide film and the induce d magnetic order, leading to alternating ferromagnetically and anti-ferromagnetically ordered segments. While the local magnetic order is directly related to the geometric position of the Co atoms, the mismatch between the CoO film and the Ir substrate leads to a complex long-range order of the oxide.
We report observation of magneto-electric and magneto-dielectric couplings in ceramic Co3TeO6. Temperature dependent DC magnetization and dielectric constant measurements together indicate coupling between magnetic order and electronic polarization. Strong anomaly in dielectric constant at ~ 18K in zero magnetic field indicates presence of spontaneous polarization. Observations like weak ferromagnetic order at lower temperature, field and temperature dependences of the ferroelectric transition provide experimental verification of the recent theoretical proposal by P. Toledano et al., Phys. Rev. B 85, 214439 (2012). We provide direct evidence of spin-phonon coupling as possible origin of magnetic order.
Artificially engineered superlattices were designed and fabricated to induce different growth mechanisms and structural characteristics. DC sputtering was used to grow ferromagnetic (La$_{0.8}$Ba$_{0.2}$MnO$_3$) / ferroelectric (Ba$_{0.25}$Sr$_{0.75} $TiO$_3$ or BaTiO$_3$) superlattices. We systematically modified the thickness of the ferromagnetic layer to analyze dimensional and structural effects on the superlattices with different structural characteristics. The crystalline structure was characterized by X-Ray diffraction and transmission electron microscopy. The magnetic and electronic properties were investigated by SQUID magnetometry and resistance measurements. The results show that both strain and structural disorder can significantly affect the physical properties of the systems. Compressive strain tends to increase the competition between the magnetic interactions decreasing the ferromagnetism of the samples and the localization of the charge carrier through the electron-phonon interaction. Tensile strain reduces the charge carrier localization, increasing the ferromagnetic transition temperature. Structural defects have a stronger influence on the magnetic properties than on the transport properties, reducing the ferromagnetic transition temperature while increasing the magnetic hardness of the superlattices. These results help to further understand the role of strain and interface effects in the magnetic and transport properties of manganite based multiferroic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا