ﻻ يوجد ملخص باللغة العربية
Artificially engineered superlattices were designed and fabricated to induce different growth mechanisms and structural characteristics. DC sputtering was used to grow ferromagnetic (La$_{0.8}$Ba$_{0.2}$MnO$_3$) / ferroelectric (Ba$_{0.25}$Sr$_{0.75}$TiO$_3$ or BaTiO$_3$) superlattices. We systematically modified the thickness of the ferromagnetic layer to analyze dimensional and structural effects on the superlattices with different structural characteristics. The crystalline structure was characterized by X-Ray diffraction and transmission electron microscopy. The magnetic and electronic properties were investigated by SQUID magnetometry and resistance measurements. The results show that both strain and structural disorder can significantly affect the physical properties of the systems. Compressive strain tends to increase the competition between the magnetic interactions decreasing the ferromagnetism of the samples and the localization of the charge carrier through the electron-phonon interaction. Tensile strain reduces the charge carrier localization, increasing the ferromagnetic transition temperature. Structural defects have a stronger influence on the magnetic properties than on the transport properties, reducing the ferromagnetic transition temperature while increasing the magnetic hardness of the superlattices. These results help to further understand the role of strain and interface effects in the magnetic and transport properties of manganite based multiferroic systems.
A current challenge in the field of magnetoelectric multiferroics is to identify systems that allow a controlled tuning of states displaying distinct magnetoelectric responses. Here we show that the multiferroic ground state of the archetypal multife
We report on the effect of epitaxial strain on magnetic and optical properties of perovskite LaCrO3 (LCO) single crystal thin films. Epitaxial LCO thin films are grown by pulsed laser deposition on proper choice of substrates to impose different stra
Oxygen vacancies in transition metal oxides facilitate catalysis critical for energy storage and generation. However, it has proven elusive to promote vacancies at the lower temperatures required for operation in devices such as metal-air batteries a
Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron X-ray and neutron diffraction patterns suggests some site disorder on
The interfacial charge transfer from the substrate may influence the electronic structure of the epitaxial van der Waals (vdW) monolayers and thus their further technological applications. For instance, the freestanding Sb monolayer in puckered honey