ﻻ يوجد ملخص باللغة العربية
Drone-mounted base stations (DBSs) are promising solutions to provide ubiquitous connections to users and support many applications in the fifth generation of mobile networks while full duplex communications has the potential to improve the spectrum efficiency. In this paper, we have investigated the backhaul-aware uplink communications in a full-duplex DBS-aided HetNet (BUD) problem with the objective to maximize the total throughput of the network, and this problem is decomposed into two sub-problems: the DBS Placement problem (including the vertical dimension and horizontal dimensions) and the joint UE association, power and bandwidth assignment (Joint-UPB) problem. Since the BUD problem is NP-hard, we propose approximation algorithms to solve the sub-problems and another, named the AA-BUD algorithm, to solve the BUD problem with guaranteed performance. The performance of the AA-BUD algorithm has been demonstrated via extensive simulations, and it is superior to two benchmark algorithms with up to 45.8% throughput improvement.
With the development of self-interference (SI) cancelation technology, full-duplex (FD) communication becomes possible. FD communication can theoretically double the spectral efficiency. When the time slot (TS) resources are limited and the number of
This paper consider a new secure communication scene where a full-duplex transmitter (Alan) need to transmit confidential information to a half-duplex receiver (Bob), with a silent eavesdropper (Eve) that tries to eavesdrop the confidential informati
We study the beamforming optimization for an intelligent reflecting surface (IRS)-aided full-duplex (FD) communication system in this letter. Specifically, we maximize the sum rate of bi-directional transmissions by jointly optimizing the transmit be
This paper investigates the passive beamforming and deployment design for an intelligent reflecting surface (IRS) aided full-duplex (FD) wireless system, where an FD access point (AP) communicates with an uplink (UL) user and a downlink (DL) user sim
This paper studies intelligent reflecting surface (IRS)-aided full-duplex (FD) wireless-powered communication network (WPCN), where a hybrid access point (HAP) broadcasts energy signals to multiple devices for their energy harvesting in the downlink