ﻻ يوجد ملخص باللغة العربية
Symmetries in Quantum Field Theory may have t Hooft anomalies. If the symmetry is unbroken in the vacuum, the anomaly implies a nontrivial low-energy limit, such as gapless modes or a topological field theory. If the symmetry is spontaneously broken, for the continuous case, the anomaly implies low-energy theorems about certain couplings of the Goldstone modes. Here we study the case of spontaneously broken discrete symmetries, such as Z/2 and T. Symmetry breaking leads to domain walls, and the physics of the domain walls is constrained by the anomaly. We investigate how the physics of the domain walls leads to a matching of the original discrete anomaly. We analyze the symmetry structure on the domain wall, which requires a careful analysis of some properties of the unbreakable CPT symmetry. We demonstrate the general results on some examples and we explain in detail the mod 4 periodic structure that arises in the Z/2 and T case. This gives a physical interpretation for the Smith isomorphism, which we also extend to more general abelian groups. We show that via symmetry breaking and the analysis of the physics on the wall, the computations of certain discrete anomalies are greatly simplified. Using these results we perform new consistency checks on the infrared phases of 2+1 dimensional QCD.
We study the discrete chiral- and center-symmetry t Hooft anomaly matching in the charge-$q$ two-dimensional Schwinger model. We show that the algebra of the discrete symmetry operators involves a central extension, implying the existence of $q$ vacu
Axial anomaly and nesting is elucidated in the context of the inhomogeneous chiral phase. Using the Gross-Neveu models in 1+1 dimensions, we shall discuss axial anomaly and nesting from two different points of view: one is homogeneous chiral transiti
We show that axion models with the domain wall number $k$ in $(3+1)$ dimensions, i.e., periodic scalar field theories admitting $k$ axion domain walls, exhibit an emergent ${mathbb Z}_k$ 3-form symmetry for $k >1$ in addition to a conventional ${math
We study non-topological, charged planar walls (Q-walls) in the context of a particle physics model with supersymmetry broken by low-energy gauge mediation. Analytical properties are derived within the flat-potential approximation for the flat-direct
We study generalized discrete symmetries of quantum field theories in 1+1D generated by topological defect lines with no inverse. In particular, we describe t Hooft anomalies and classify gapped phases stabilized by these symmetries, including new 1+