ﻻ يوجد ملخص باللغة العربية
We study the discrete chiral- and center-symmetry t Hooft anomaly matching in the charge-$q$ two-dimensional Schwinger model. We show that the algebra of the discrete symmetry operators involves a central extension, implying the existence of $q$ vacua, and that the chiral and center symmetries are spontaneously broken. We then argue that an axial version of the $q$$=$$2$ model appears in the worldvolume theory on domain walls between center-symmetry breaking vacua in the high-temperature $SU(2)$ ${cal N}$$=$$1$ super-Yang-Mills theory and that it inherits the discrete t Hooft anomalies of the four-dimensional bulk. The Schwinger model results suggest that the high-temperature domain wall exhibits a surprisingly rich structure: it supports a non-vanishing fermion condensate and perimeter law for spacelike Wilson loops, thus mirroring many properties of the strongly coupled four-dimensional low-temperature theory. We also discuss generalizations to theories with multiple adjoint fermions and possible lattice tests.
We study the domain walls in hot $4$-D $SU(N)$ super Yang-Mills theory and QCD(adj), with $n_f$ Weyl flavors. We find that the $k$-wall worldvolume theory is $2$-D QCD with gauge group $SU(N-k)times SU(k) times U(1)$ and Dirac fermions charged under
We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined
We study the chiral effective theory in the presence of QCD vortices. Gauge invariance requires novel terms from vortex singularities in the gauged Wess-Zumino-Witten action, which incorporate anomaly induced currents along the vortices. We examine t
It is shown how, starting from a mapping theorem recently proved between massless quartic scalar field theory and Yang-Mills theory, both two-point functions and spectrum of the Yang-Mills theory can be obtained. These results compare very well with respect to lattice computations.
We study the physics of quark deconfinement on domain walls in four-dimensional supersymmetric SU(N) Yang-Mills theory, compactified on a small circle with supersymmetric boundary conditions. We numerically examine the properties of BPS domain walls