ﻻ يوجد ملخص باللغة العربية
Is it possible to learn policies for robotic assembly that can generalize to new objects? We explore this idea in the context of the kit assembly task. Since classic methods rely heavily on object pose estimation, they often struggle to generalize to new objects without 3D CAD models or task-specific training data. In this work, we propose to formulate the kit assembly task as a shape matching problem, where the goal is to learn a shape descriptor that establishes geometric correspondences between object surfaces and their target placement locations from visual input. This formulation enables the model to acquire a broader understanding of how shapes and surfaces fit together for assembly -- allowing it to generalize to new objects and kits. To obtain training data for our model, we present a self-supervised data-collection pipeline that obtains ground truth object-to-placement correspondences by disassembling complete kits. Our resulting real-world system, Form2Fit, learns effective pick and place strategies for assembling objects into a variety of kits -- achieving $90%$ average success rates under different initial conditions (e.g. varying object and kit poses), $94%$ success under new configurations of multiple kits, and over $86%$ success with completely new objects and kits.
Cardiac MR image segmentation is essential for the morphological and functional analysis of the heart. Inspired by how experienced clinicians assess the cardiac morphology and function across multiple standard views (i.e. long- and short-axis views),
The authors propose the implementation of hybrid Fuzzy Logic-Genetic Algorithm (FL-GA) methodology to plan the automatic assembly and disassembly sequence of products. The GA-Fuzzy Logic approach is implemented onto two levels. The first level of hyb
We study the problem of learning a generalizable action policy for an intelligent agent to actively approach an object of interest in an indoor environment solely from its visual inputs. While scene-driven or recognition-driven visual navigation has
In this work, motivated by recent manufacturing trends, we investigate autonomous robotic assembly. Industrial assembly tasks require contact-rich manipulation skills, which are challenging to acquire using classical control and motion planning appro
Learning from Demonstration (LfD) is a popular approach to endowing robots with skills without having to program them by hand. Typically, LfD relies on human demonstrations in clutter-free environments. This prevents the demonstrations from being aff