ﻻ يوجد ملخص باللغة العربية
The tt* equation that we will study here is classed as case 4a by Guest et al. in their series of papers Isomomodromy aspects of the tt* equations of Cecotti and Vafa. In their comprehensive works, Guest et al. give a lot of beautiful formulas on and finally achieve a complete picture of asymptotic data, Stokes data and holomorphic data. But, some of their formulas are complicated, lacking of intuitional explanation or other relevant results that could directly support them. In this paper, we will first verify numerically their formulas among the asymptotic data and Stokes data. Then, we will enlarge the solution class assumed by Guest et al. from the Stoke data side. Based on the numerical results, we put forward a conjecture on the enlarged class of solutions. At last, some trial to enlarge the solution class from the asymptotic data are done. It is the truncation structure of the tt* equation that enables us to do those numerical studies with a satisfactory high precision.
Recently, we have demonstrated that some subsolutions of the free Duffin-Kemmer-Petiau and the Dirac equations obey the same Dirac equation with some built-in projection operators. In the present paper we study the Dirac equation in the interacting c
Regarding $N$-soliton solutions, the trigonometric type, the hyperbolic type, and the exponential type solutions are well studied. While for the elliptic type solution, we know only the one-soliton solution so far. Using the commutative B{a}cklund tr
Symmetries of a differential equations is one of the most important concepts in theory of differential equations and physics. One of the most prominent equations is KdV (Kortwege-de Vries) equation with application in shallow water theory. In this pa
A new approach leading to the formulation of the Hamilton-Jacobi equation for field theories is investigated within the framework of jet-bundles and multi-symplectic manifolds. An algorithm associating classes of solutions to given sets of boundary c
We consider a slowly decaying oscillatory potential such that the corresponding 1D Schrodinger operator has a positive eigenvalue embedded into the absolutely continuous spectrum. This potential does not fall into a known class of initial data for wh