ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy, lifetime and decay modes of the $T^-_{bb}$ tetraquark

66   0   0.0 ( 0 )
 نشر من قبل Eliecer Hern\\'andez Gajate
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first full-fledged study of the flavor-exotic isoscalar $T_{bb}^-equiv b b bar u bar d$ tetraquark with spin and parity $J^P=1^+$. We report accurate solutions of the four-body problem in a quark model, characterizing the structure of the state as a function of the ratio $M_Q/m_q$ of the heavy to light quark masses. For such a standard constituent model, $T_{bb}^-$ lies approximately 150 MeV below the strong decay threshold $B^-bar {B^*}^{0}$ and 105 MeV below the electromagnetic decay threshold $B^- bar B^0 gamma$. We evaluate the lifetime of $T_{bb}^-$, identifying the promising decay modes where the tetraquark might be looked for in future experiments. Its total decay width is $Gamma approx 87 times 10^{-15}$ GeV and therefore its lifetime $tau approx$ 7.6 ps. The promising final states are ${B^*}^{-}, {D^*}^{+} , ell^- , bar u_ell$ and $bar {B^*}^{0} , {D^*}^{0} , ell^- , bar u_ell $ among the semileptonic decays, and ${B^*}^{-} , {D^*}^{+} , {D_s^*}^-$, $bar {B^*}^{0} , {D^*}^{0} , {D_s^*}^- $, and ${B^*}^{-} , {D^*}^{+} , rho^-$ among the nonleptonic ones. The semileptonic decay to the isoscalar $J^P=0^+$ tetraquark $T_{bc}^0$ is also relevant but it is not found to be dominant. There is a broad consensus about the existence of this tetraquark, and its detection will validate our understanding of the low-energy realizations of Quantum Chromodynamics (QCD) in the multiquark sector.

قيم البحث

اقرأ أيضاً

We briefly review the stability of the $QQbar qbar q$-type of tetraquarks with two heavy quarks and two light antiquarks. We present the first comprehensive estimate of the lifetime and leading decay modes of the exotic meson $bbbar ubar d$ with double beauty.
The mass and coupling of the scalar tetraquark $T_{bb;overline{u}overline{d }}^{-}$ (hereafter $T_{b:overline{d}}^{-} $) are calculated in the context of the QCD two-point sum rule method. In computations we take into account effects of various quark , gluon and mixed condensates up to dimension ten. The result obtained for the mass of this state $m=(10135pm 240)~mathrm{MeV} $ demonstrates that it is stable against the strong and electromagnetic decays. We also explore the dominant semileptonic $T_{b:overline{d}}^{-} to widetilde{Z}_{bc;bar{u}bar{d}}^{0}loverline{ u }_{l}$ and nonleptonic decays $T_{b:overline{d}}^{-} to widetilde{Z}_{bc;bar{u}bar{ d}}^{0}M$, where $widetilde{Z}_{bc;bar{u}bar{d}}^{0}$ is the scalar tetraquark composed of color-sextet diquark and antidiquark, and $M$ is one of the final-state pseudoscalar mesons $pi^{-}, K^{-}, D^{-}$ and $D_s^{-}$ , respectively. The partial widths of these processes are calculated in terms of the weak form factors $G_{1(2)}(q^2)$, which are determined from the QCD three-point sum rules. Predictions for the mass, full width $Gamma _{mathrm{full}} =(10.88pm 1.88)times 10^{-10}~mathrm{MeV}$, and mean lifetime $tau=0.61_{-0.09}^{+0.13}~mathrm{ps}$ of the $T_{b:overline{d} }^{-}$ obtained in the present work can be used in theoretical and experimental studies of this exotic state.
The weak decays of the axial-vector tetraquark $T_{bb;bar{u} bar{d}}^{-}$ to the scalar state $Z_{bc;bar{u} bar{d}}^{0}$ are investigated using the QCD three-point sum rule approach. In order to explore the process $T_{bb; bar{u} bar{d}}^{-} to Z_{bc ;bar{u} bar{d}}^{0}l bar{ u_l}$, we recalculate the spectroscopic parameters of the tetraquark $T_{bb;bar{u} bar{d}}^{-}$ and find the mass and coupling of the scalar four-quark system $Z_{bc;bar{u} bar{d}}^{0}$, which are important ingredients of calculations. The spectroscopic parameters of these tetraquarks are computed in the framework of the QCD two-point sum rule method by taking into account various condensates up to dimension ten. The mass of the $T_{bb;bar{u} bar{ d}}^{-}$ state is found to be $m=(10035~pm 260)~mathrm{MeV}$, which demonstrates that it is stable against the strong and electromagnetic decays. The full width $Gamma$ and mean lifetime $tau$ of $T_{bb;bar{u} bar{d} }^{-}$ are evaluated using its semileptonic decay channels $T_{bb; bar{u} bar{d}}^{-} to Z_{bc;bar{u} bar{d}}^{0}l bar{ u_l}$, $l=e,mu$ and $tau$. The obtained results, $Gamma=(7.17pm 1.23)times 10^{-8 } mathrm{MeV}$ and $tau =9.18_{-1.34}^{+1.90}~mathrm{fs}$, can be useful for experimental investigations of the doubly-heavy tetraquarks.
We compute the mass-spectra of all bottom tetraquarks [$bb][bar{b}bar{b}$] and heavy-light bottom tetraquarks [$bq][bar{b}bar{q}$] (q=u,d), that are considered to be compact and made up of diquark-antidiquark pairs. The fully bottom tetraquark [$bb][ bar{b}bar{b}$] has been studied in $eta_{b}(1S)eta_{b}(1S)$, $eta_{b}(1S)Upsilon(1S)$ and $Upsilon(1S)Upsilon(1S)$ S-wave channels, as well as a few orbitally excited channels, with masses ranging from 18.7 GeV to 19.8 GeV. The masses of heavy-light bottom tetraquarks are studied in the $B^{pm}B^{pm}$, $B^{pm}B^{*}$ and $B^{*}B^{*}$ channels, with masses ranging from 10.4 GeV to 10.5 GeV. Two charged resonances, $Z_{b}(10610)$ and $Z_{b}(10650)$, both with the quantum number $1^{+-}$, have also been investigated.
The past seventeen years have witnessed tremendous progress on the experimental and theoretical explorations of the multiquark states. The hidden-charm and hidden-bottom multiquark systems were reviewed extensively in [Phys. Rept. 639 (2016) 1-121]. In this article, we shall update the experimental and theoretical efforts on the hidden heavy flavor multiquark systems in the past three years. Especially the LHCb collaboration not only confirmed the existence of the hidden-charm pentaquarks but also provided strong evidence of the molecular picture. Besides the well-known $XYZ$ and $P_c$ states, we shall discuss more interesting tetraquark and pentaquark systems either with one, two, three or even four heavy quarks. Some very intriguing states include the fully heavy exotic tetraquark states $QQbar Qbar Q$ and doubly heavy tetraquark states $QQbar q bar q$, where $Q$ is a heavy quark. The $QQbar Qbar Q$ states may be produced at LHC while the $QQbar q bar q$ system may be searched for at BelleII and LHCb. Moreover, we shall pay special attention to various theoretical schemes. We shall emphasize the model-independent predictions of various models which are truly/closely related to Quantum Chromodynamics (QCD). There have also accumulated many lattice QCD simulations through multiple channel scattering on the lattice in recent years, which provide deep insights into the underlying structure/dynamics of the $XYZ$ states. In terms of the recent $P_c$ states, the lattice simulations of the charmed baryon and anti-charmed meson scattering are badly needed. We shall also discuss some important states which may be searched for at BESIII, BelleII and LHCb in the coming years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا