ترغب بنشر مسار تعليمي؟ اضغط هنا

E2-Train: Training State-of-the-art CNNs with Over 80% Energy Savings

111   0   0.0 ( 0 )
 نشر من قبل Yue Wang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional neural networks (CNNs) have been increasingly deployed to edge devices. Hence, many efforts have been made towards efficient CNN inference in resource-constrained platforms. This paper attempts to explore an orthogonal direction: how to conduct more energy-efficient training of CNNs, so as to enable on-device training. We strive to reduce the energy cost during training, by dropping unnecessary computations from three complementary levels: stochastic mini-batch dropping on the data level; selective layer update on the model level; and sign prediction for low-cost, low-precision back-propagation, on the algorithm level. Extensive simulations and ablation studies, with real energy measurements from an FPGA board, confirm the superiority of our proposed strategies and demonstrate remarkable energy savings for training. For example, when training ResNet-74 on CIFAR-10, we achieve aggressive energy savings of >90% and >60%, while incurring a top-1 accuracy loss of only about 2% and 1.2%, respectively. When training ResNet-110 on CIFAR-100, an over 84% training energy saving is achieved without degrading inference accuracy.



قيم البحث

اقرأ أيضاً

Deep convolutional neural networks have achieved great success in various applications. However, training an effective DNN model for a specific task is rather challenging because it requires a prior knowledge or experience to design the network archi tecture, repeated trial-and-error process to tune the parameters, and a large set of labeled data to train the model. In this paper, we propose to overcome these challenges by actively adapting a pre-trained model to a new task with less labeled examples. Specifically, the pre-trained model is iteratively fine tuned based on the most useful examples. The examples are actively selected based on a novel criterion, which jointly estimates the potential contribution of an instance on optimizing the feature representation as well as improving the classification model for the target task. On one hand, the pre-trained model brings plentiful information from its original task, avoiding redesign of the network architecture or training from scratch; and on the other hand, the labeling cost can be significantly reduced by active label querying. Experiments on multiple datasets and different pre-trained models demonstrate that the proposed approach can achieve cost-effective training of DNNs.
Graph-structured data are an integral part of many application domains, including chemoinformatics, computational biology, neuroimaging, and social network analysis. Over the last two decades, numerous graph kernels, i.e. kernel functions between gra phs, have been proposed to solve the problem of assessing the similarity between graphs, thereby making it possible to perform predictions in both classification and regression settings. This manuscript provides a review of existing graph kernels, their applications, software plus data resources, and an empirical comparison of state-of-the-art graph kernels.
Recent progress in deep convolutional neural networks (CNNs) have enabled a simple paradigm of architecture design: larger models typically achieve better accuracy. Due to this, in modern CNN architectures, it becomes more important to design models that generalize well under certain resource constraints, e.g. the number of parameters. In this paper, we propose a simple way to improve the capacity of any CNN model having large-scale features, without adding more parameters. In particular, we modify a standard convolutional layer to have a new functionality of channel-selectivity, so that the layer is trained to select important channels to re-distribute their parameters. Our experimental results under various CNN architectures and datasets demonstrate that the proposed new convolutional layer allows new optima that generalize better via efficient resource utilization, compared to the baseline.
Energy-Based Models (EBMs), also known as non-normalized probabilistic models, specify probability density or mass functions up to an unknown normalizing constant. Unlike most other probabilistic models, EBMs do not place a restriction on the tractab ility of the normalizing constant, thus are more flexible to parameterize and can model a more expressive family of probability distributions. However, the unknown normalizing constant of EBMs makes training particularly difficult. Our goal is to provide a friendly introduction to modern approaches for EBM training. We start by explaining maximum likelihood training with Markov chain Monte Carlo (MCMC), and proceed to elaborate on MCMC-free approaches, including Score Matching (SM) and Noise Constrastive Estimation (NCE). We highlight theoretical connections among these three approaches, and end with a brief survey on alternative training methods, which are still under active research. Our tutorial is targeted at an audience with basic understanding of generative models who want to apply EBMs or start a research project in this direction.
Graphs have been widely used to represent complex data in many applications. Efficient and effective analysis of graphs is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using machine learning (ML) to solve graph-based CO problems. Most recent methods follow the two-stage framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second stage uses ML to solve the CO problems using the embeddings of the graphs learned in the first stage. The works for the first stage can be classified into two categories, graph embedding (GE) methods and end-to-end (E2E) learning methods. For GE methods, learning graph embedding has its own objective, which may not rely on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For E2E learning methods, the learning of graph embeddings does not have its own objective and is an intermediate step of the learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories, non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of a solution of the CO problem. The solution can be computed from the matrix. Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research directions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا