ﻻ يوجد ملخص باللغة العربية
Basis pursuit is a compressed sensing optimization in which the l1-norm is minimized subject to model error constraints. Here we use a deep neural network prior instead of l1-regularization. Using known noise statistics, we jointly learn the prior and reconstruct images without access to ground-truth data. During training, we use alternating minimization across an unrolled iterative network and jointly solve for the neural network weights and training set image reconstructions. At inference, we fix the weights and pass the measurements through the network. We compare reconstruction performance between unsupervised and supervised (i.e. with ground-truth) methods. We hypothesize this technique could be used to learn reconstruction when ground-truth data are unavailable, such as in high-resolution dynamic MRI.
To perform robot manipulation tasks, a low-dimensional state of the environment typically needs to be estimated. However, designing a state estimator can sometimes be difficult, especially in environments with deformable objects. An alternative is to
Regularization by denoising (RED) is an image reconstruction framework that uses an image denoiser as a prior. Recent work has shown the state-of-the-art performance of RED with learned denoisers corresponding to pre-trained convolutional neural nets
High-quality magnetic resonance (MR) image, i.e., with near isotropic voxel spacing, is desirable in various scenarios of medical image analysis. However, many MR acquisitions use large inter-slice spacing in clinical practice. In this work, we propo
Deep neural networks for medical image reconstruction are traditionally trained using high-quality ground-truth images as training targets. Recent work onNoise2Noise (N2N) has shown the potential of using multiple noisy measurements of the same objec
Regression analysis is a standard supervised machine learning method used to model an outcome variable in terms of a set of predictor variables. In most real-world applications we do not know the true value of the outcome variable being predicted out