ترغب بنشر مسار تعليمي؟ اضغط هنا

A rare case of FR I interaction with a hot X-ray bridge in the A2384 galaxy cluster

75   0   0.0 ( 0 )
 نشر من قبل Viral Parekh Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Clusters of varying mass ratios can merge and the process significantly disturbs the cluster environments and alters their global properties. Active radio galaxies are another phenomenon that can also affect cluster environments. Radio jets can interact with the intra-cluster medium (ICM) and locally affect its properties. Abell~2384 (hereafter A2384) is a unique system that has a dense, hot X-ray filament or bridge connecting the two unequal mass clusters A2384(N) and A2384(S). The analysis of its morphology suggests that A2384 is a post-merger system where A2384(S) has already interacted with the A2384(N), and as a result hot gas has been stripped over a ~ 1 Mpc region between the two bodies. We have obtained its 325 MHz GMRT data, and we detected a peculiar FR I type radio galaxy which is a part of the A2384(S). One of its radio lobes interacts with the hot X-ray bridge and pushes the hot gas in the opposite direction. This results in displacement in the bridge close to A2384(S). Based on Chandra and XMM-Newton X-ray observations, we notice a temperature and entropy enhancement at the radio lobe-X-ray plasma interaction site, which further suggests that the radio lobe is changing thermal plasma properties. We have also studied the radio properties of the FR I radio galaxy, and found that the size and radio luminosity of the interacting north lobe of the FR I galaxy are lower than those of the accompanying south lobe.



قيم البحث

اقرأ أيضاً

We present results from an X-ray and radio study of the merging galaxy cluster Abell 115. We use the full set of 5 Chandra observations taken of A115 to date (360 ks total integration) to construct high-fidelity temperature and surface brightness map s. We also examine radio data from the Very Large Array at 1.5 GHz and the Giant Metrewave Radio Telescope at 0.6 GHz. We propose that the high X-ray spectral temperature between the subclusters results from the interaction of the bow shocks driven into the intracluster medium by the motion of the subclusters relative to one another. We have identified morphologically similar scenarios in Enzo numerical N-body/hydrodynamic simulations of galaxy clusters in a cosmological context. In addition, the giant radio relic feature in A115, with an arc-like structure and a relatively flat spectral index, is likely consistent with other shock-associated giant radio relics seen in other massive galaxy clusters. We suggest a dynamical scenario that is consistent with the structure of the X-ray gas, the hot region between the clusters, and the radio relic feature.
We present preliminary results from a multi-wavelength study of a merger candidate, NGC3801, hosting a young FR I radio galaxy, with a Z-shaped structure. Analysing archival data from the VLA, we find two HI emission blobs on either side of the host galaxy, suggesting a 30 kpc sized rotating gas disk aligned with stellar rotation, but rotating significantly faster than the stars. Broad, faint, blue-shifted absorption wing and an HI absorption clump associated with the shocked shell around the eastern lobe are also seen, possibly due to an jet-driven outflow. While 8.0 um dust and PAH emission, from Spitzer and near and far UV emission from GALEX is seen on a large scale in an S-shape, partially coinciding with the HI emission blobs, it reveals a ~2 kpc radius ring-like, dusty, starforming structure in the nuclear region, orthogonal to the radio jet axis. Its similarities with Kinematically Decoupled Core galaxies and other evidences have been argued for a merger origin of this young, bent jet radio galaxy.
In recent years, the outskirts of galaxy clusters have emerged as one of the new frontiers and unique laboratories for studying the growth of large scale structure in the universe. Modern cosmological hydrodynamical simulations make firm and testable predictions of the thermodynamic and chemical evolution of the X-ray emitting intracluster medium. However, recent X-ray and Sunyaev-Zeldovich effect observations have revealed enigmatic disagreements with theoretical predictions, which have motivated deeper investigations of a plethora of astrophysical processes operating in the virialization region in the cluster outskirts. Much of the physics of cluster outskirts is fundamentally different from that of cluster cores, which has been the main focus of X-ray cluster science over the past several decades. A next-generation X-ray telescope, equipped with sub-arcsecond spatial resolution over a large field of view along with a low and stable instrumental background, is required in order to reveal the full story of the growth of galaxy clusters and the cosmic web and their applications for cosmology.
To search for a signature of an intracluster magnetic field, we compare measurements of Faraday rotation of polarised extragalactic radio sources in the line of sight of galaxy clusters with those outside. We correlated a catalogue of 1383 rotation m easures (RM) of extragalactic polarised radio sources with X-ray luminous galaxy clusters from the CLASSIX survey (combining REFLEX II and NORAS II). We compared the RM in the line of sight of clusters within their projected radii of r_500 with those outside and found a significant excess of the dispersion of the RM in the cluster regions. Since the observed RM is the result of Faraday rotation in several presumably uncorrelated magnetised cells of the intracluster medium, the observations correspond to quantities averaged over several magnetic field directions and strengths. Therefore the interesting quantity is the standard deviation of the RM for an ensemble of clusters. We found a standard deviation of the RM inside r_500 of about 120 +- 21 rad m^-2. This compares to about 56 +- 8 rad m^-2 outside. We show that the most X-ray luminous and thus most massive clusters contribute most to the observed excess RM. Modelling the electron density distribution in the intracluster medium with a self-similar model, we found that the dispersion of the RM increases with the column density, and we deduce a magnetic field value of about 2 - 6 (l/10kpc)^-1/2 microG assuming a constant magnetic field strength, where l is the size of the coherently magnetised intracluster medium cells. This magnetic field energy density amounts to a few percent of the average thermal energy density in clusters. When we assumed the magnetic energy density to be a constant fraction of the thermal energy density, we deduced a slightly lower value for this fraction of 3 - 10 (l/10kpc)^-1/2 per mille.
The presence of luminous hot X-ray coronae in the dark matter halos of massive spiral galaxies is a basic prediction of galaxy formation models. However, observational evidence for such coronae is very scarce, with the first few examples having only been detected recently. In this paper, we study the large-scale diffuse X-ray emission associated with the massive spiral galaxy NGC266. Using ROSAT and Chandra X-ray observations we argue that the diffuse emission extends to at least ~70 kpc, whereas the bulk of the stellar light is confined to within ~25 kpc. Based on X-ray hardness ratios, we find that most of the diffuse emission is released at energies <1.2 keV, which indicates that this emission originates from hot X-ray gas. Adopting a realistic gas temperature and metallicity, we derive that in the (0.05-0.15)r_200 region (where r_200 is the virial radius) the bolometric X-ray luminosity of the hot gas is (4.3 +/- 0.8) x 10^40 erg/s and the gas mass is (9.1 +/- 0.9) x 10^9 M_sun. These values are comparable to those observed for the two other well-studied X-ray coronae in spiral galaxies, suggesting that the physical properties of such coronae are similar. This detection offers an excellent opportunity for comparison of observations with detailed galaxy formation simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا