ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the Galaxy Cluster - Cosmic Web Connection with X-ray observations in the Next Decade

96   0   0.0 ( 0 )
 نشر من قبل Stephen Walker
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, the outskirts of galaxy clusters have emerged as one of the new frontiers and unique laboratories for studying the growth of large scale structure in the universe. Modern cosmological hydrodynamical simulations make firm and testable predictions of the thermodynamic and chemical evolution of the X-ray emitting intracluster medium. However, recent X-ray and Sunyaev-Zeldovich effect observations have revealed enigmatic disagreements with theoretical predictions, which have motivated deeper investigations of a plethora of astrophysical processes operating in the virialization region in the cluster outskirts. Much of the physics of cluster outskirts is fundamentally different from that of cluster cores, which has been the main focus of X-ray cluster science over the past several decades. A next-generation X-ray telescope, equipped with sub-arcsecond spatial resolution over a large field of view along with a low and stable instrumental background, is required in order to reveal the full story of the growth of galaxy clusters and the cosmic web and their applications for cosmology.

قيم البحث

اقرأ أيضاً

In this paper we study the large scale structures and their galaxy content around the most X-ray luminous cluster known, RX J1347.5-1145 at z=0.45. We make use of ugriz CFHT MEGACAM photometry and VIMOS VLT spectroscopy to identify structures around the RXJ1347 on a scale of 20x20 Mpc2. We construct maps of the galaxy distribution and the fraction of blue galaxies. We study the photometric galaxy properties as a function of environment, traced by the galaxy density. We identify group candidates based on galaxy overdensities and study their galaxy content. We also use available GALEX NUV imaging to identify strong unobscured star forming galaxies. We find that the large scale structure around RXJ1347 extends in the NE-SW direction for at least 20 Mpc, in which most of the group candidates are located. As other studies, we find that the fraction of blue galaxies (Fblue) is a function of galaxy number density, but the bulk of the trend is due to galaxies belonging to massive systems. The fraction of the UV-bright galaxies is also function of environment, but their relative numbers compared to the blue population seems to be constant regardless of the environment. These UV emitters also have similar properties at all galaxy densities, indicating that the transition between galaxy types occurs in short time-scales. Candidate galaxy groups show a large variation in their galaxy content and Fblue in those groups display little dependence with galaxy density. This may indicate possible differences in their evolutionary status or the processes that are acting in groups are different than in clusters. The large scale structure around rich clusters are dynamic places for galaxy evolution. In the case of RXJ1347 the transformation may start within infalling groups to finish with the removal of the cold gas once galaxies are accreted in massive systems. (ABRIDGED)
Both simulation and observational data have shown that the spin and shape of dark matter halos are correlated with their nearby large-scale environment. As structure formation on different scales is strongly coupled, it is trick to disentangle the fo rmation of halo with the large-scale environment, making it difficult to infer which is the driving force for the correlation between halo spin/shape with the large-scale structure. In this paper, we use N-body simulation to produce twin Universes that share the same initial conditions on small scales but different on large scales. This is achieved by changing the random seeds for the phase of those k modes smaller than a given scale in the initial conditions. In this way, we are able to disentangle the formation of halo and large-scale structure, making it possible to investigate how halo spin and shape correspond to the change of environment on large scales. We identify matching halo pairs in the twin simulations as those sharing the maximum number of identical particles within each other. Using these matched halo pairs, we study the cross match of halo spin and their correlation with the large-scale structure. It is found that when the large-scale environment changes (eigenvector) between the twin simulations, the halo spin has to rotate accordingly, although not significantly, to maintain the universal correlation seen in each simulation. Our results suggest that the large-scale structure is the main factor to drive the correlation between halo properties and their environment.
We study the distribution of projected offsets between the cluster X-ray centroid and the brightest cluster galaxy (BCG) for 65 X-ray selected clusters from the Local Cluster Substructure Survey (LoCuSS), with a median redshift of z=0.23. We find a c lear correlation between X-ray/BCG projected offset and the logarithmic slope of the cluster gas density profile at 0.04r500 (alpha), implying that more dynamically disturbed clusters have weaker cool cores. Furthermore, there is a close correspondence between the activity of the BCG, in terms of detected H_alpha and radio emission, and the X-ray/BCG offset, with the line emitting galaxies all residing in clusters with X-ray/BCG offsets of <~15 kpc. Of the BCGs with alpha < -0.85 and an offset < 0.02r500, 96 per cent (23/24) have optical emission and 88 per cent (21/24) are radio active, while none has optical emission outside these criteria. We also study the cluster gas fraction (fgas) within r500 and find a significant correlation with X-ray/BCG projected offset. The mean fgas of the `small offset clusters (< 0.02r500) is 0.106+/-0.005 (sigma=0.03) compared to 0.145+/-0.009 (sigma=0.04) for those with an offset > 0.02r500, indicating that the total mass may be systematically underestimated in clusters with larger X-ray/BCG offsets. Our results imply a link between cool core strength and cluster dynamical state consistent with the view that cluster mergers can significantly perturb cool cores, and set new constraints on models of the evolution of the intracluster medium.
We introduce the NEXUS algorithm for the identification of Cosmic Web environments: clusters, filaments, walls and voids. This is a multiscale and automatic morphological analysis tool that identifies all the cosmic structures in a scale free way, wi thout preference for a certain size or shape. We develop the NEXUS method to incorporate the density, tidal field, velocity divergence and velocity shear as tracers of the Cosmic Web. We also present the NEXUS+ procedure which, taking advantage of a novel filtering of the density in logarithmic space, is very successful at identifying the filament and wall environments in a robust and natural way. To asses the algorithms we apply them to an N-body simulation. We find that all methods correctly identify the most prominent filaments and walls, while there are differences in the detection of the more tenuous structures. In general, the structures traced by the density and tidal fields are clumpier and more rugged than those present in the velocity divergence and velocity shear fields. We find that the NEXUS+ method captures much better the filamentary and wall networks and is successful in detecting even the fainter structures. We also confirm the efficiency of our methods by examining the dark matter particle and halo distributions.
The cosmic X-ray background (CXB), which peaks at an energy of ~30 keV, is produced primarily by emission from accreting supermassive black holes (SMBHs). The CXB therefore serves as a constraint on the integrated SMBH growth in the Universe and the accretion physics and obscuration in active galactic nuclei (AGNs). This paper gives an overview of recent progress in understanding the high-energy (>~10 keV) X-ray emission from AGNs and the synthesis of the CXB, with an emphasis on results from NASAs NuSTAR hard X-ray mission. We then discuss remaining challenges and open questions regarding the nature of AGN obscuration and AGN physics. Finally, we highlight the exciting opportunities for a next-generation, high-resolution hard X-ray mission to achieve the long-standing goal of resolving and characterizing the vast majority of the accreting SMBHs that produce the CXB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا