ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of an intrinsic, ferromagnetic axion insulator in MnBi8Te13

73   0   0.0 ( 0 )
 نشر من قبل Chaowei Hu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay between topology and magnetism is essential for realizing novel topological states including the axion insulator, the magnetic Weyl semimetals, the Chern insulator, as well as the 3D quantized anomalous Hall insulator. A stoichiometric, intrinsically consisting of the building blocks of [MnBi2Te4] septuple layers and [Bi2Te3] quintuple layers, we report the first stoichiometric, intrinsic ferromagnetic topological material with clean low-energy band structure in MnBi8Te13. Our data show that MnBi8Te13 is ferromagnetic below 10.5 K with strong coupling between magnetism and charge carriers. Our first-principles calculations and angle-resolved photoemission spectroscopy measurements further demonstrate that MnBi8Te13 is an intrinsic ferromagnetic axion insulator. Therefore, MnBi8Te13 serves as an ideal system to investigate rich emergent phenomena, including quantized anomalous Hall effect and quantized topological magnetoelectric effect.



قيم البحث

اقرأ أيضاً

104 - Di Xiao , Jue Jiang , Jae-Ho Shin 2017
The magnetoelectric effect arises from the coupling between magnetic and electric properties in materials. The Z2 invariant of topological insulators (TIs) leads to a quantized version of this phenomenon, known as the topological magnetoelectric (TME ) effect. This effect can be realized in a new topological phase called an axion insulator whose surface states are all gapped but the interior still obeys time reversal symmetry. We demonstrate such a phase using electrical transport measurements in a quantum anomalous Hall (QAH) sandwich heterostructure, in which two compositionally different magnetic TI layers are separated by an undoped TI layer. Magnetic force microscopy images of the same sample reveal sequential magnetization reversals of the top and bottom layers at different coercive fields, a consequence of the weak interlayer exchange coupling due to the spacer. When the magnetization is antiparallel, both the Hall resistance and Hall conductance show zero plateaus, accompanied by a large longitudinal resistance and vanishing longitudinal conductance, indicating the realization of an axion insulator state. Our findings thus show evidences for a phase of matter distinct from the established QAH state and provide a promising platform for the realization of the TME effect.
Intrinsic magnetic topological insulator (TI) is a stoichiometric magnetic compound possessing both inherent magnetic order and topological electronic states. Such a material can provide a shortcut to various novel topological quantum effects but rem ains elusive experimentally so far. Here, we report the experimental realization of high-quality thin films of an intrinsic magnetic TI---MnBi$_2$Te$_4$---by alternate growth of a Bi$_2$Te$_3$ quintuple-layer and a MnTe bilayer with molecular beam epitaxy. The material shows the archetypical Dirac surface states in angle-resolved photoemission spectroscopy and is demonstrated to be an antiferromagnetic topological insulator with ferromagnetic surfaces by magnetic and transport measurements as well as first-principles calculations. The unique magnetic and topological electronic structures and their interplays enable the material to embody rich quantum phases such as quantum anomalous Hall insulators and axion insulators in a well-controlled way.
We investigated the electronic and magnetic properties of fully oxidized BaFeO3 thin films, which show ferromagnetic-insulating properties with cubic crystal structure, by hard x-ray photoemission spectroscopy (HAXPES), x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD). We analyzed the results with configuration-interaction (CI) cluster-model calculations for Fe4+, which showed good agreement with the experimental results. We also studied SrFeO3 thin films, which have an Fe4+ ion helical magnetism in cubic crystal structure, but are metallic at all temperatures. We found that BaFeO3 thin films are insulating with large magnetization (2.1muB/formula unit) under ~ 1 T, using valence-band HAXPES and Fe 2p XMCD, which is consistent with the previously reported resistivity and magnetization measurements. Although Fe 2p core-level HAXPES and Fe 2p XAS spectra of BaFeO3 and SrFeO3 thin films are quite similar, we compared the insulating BaFeO3 to metallic SrFeO3 thin films with valence-band HAXPES. The CI cluster-model analysis indicates that the ground state of BaFeO3 is dominated by d5L (L: ligand hole) configuration due to the negative charge transfer energy, and that the band gap has significant O 2p character. We revealed that the differences of the electronic and magnetic properties between BaFeO3 and SrFeO3 arise from the differences in their lattice constants, through affecting the strength of hybridization and bandwidth.
A magnetic skyrmion induced on a ferromagnetic topological insulator (TI) is a real-space manifestation of the chiral spin texture in the momentum space, and can be a carrier for information processing by manipulating it in tailored structures. Here, we fabricate a sandwich structure containing two layers of a self-assembled ferromagnetic septuple-layer TI, Mn(Bi$_{1-x}$Sb$_{x}$)$_{2}$Te$_{4}$ (MnBST), separated by quintuple layers of TI, (Bi$_{1-x}$Sb$_{x}$)$_{2}$Te$_{3}$ (BST), and observe skyrmions through the topological Hall effect in an intrinsic magnetic topological insulator for the first time. The thickness of BST spacer layer is crucial in controlling the coupling between the gapped topological surface states in the two MnBST layers to stabilize the skyrmion formation. The homogeneous, highly-ordered arrangement of the Mn atoms in the septuple-layer MnBST leads to a strong exchange interaction therein, which makes the skyrmions soft magnetic. This would open an avenue towards a topologically robust rewritable magnetic memory.
73 - Yang Zhang , Ke Deng , Xiao Zhang 2019
Topological insulator with antiferromagnetic order can serve as an ideal platform for the realization of axion electrodynamics. In this paper, we report a systematic study of the axion topological insulator candidate EuIn$_2$As$_2$. A linear energy d ispersion across the Fermi level confirms the existence of the proposed hole-type Fermi pocket. Spin-flop transitions occur with magnetic fields applied within the $ab$-plane while are absent for fields parallel to the $c$-axis. Anisotropic magnetic phase diagrams are observed and the orientation of the ground magnetic moment is found to be within the $ab$-plane. The magnetoresistivity for EuIn$_2$As$_2$ behaves non-monotonic as a function of field strength. It exhibits angular dependent evolving due to field-driven and temperature-driven magnetic states. These results indicate that the magnetic states of EuIn$_2$As$_2$ strongly affect the transport properties as well as the topological nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا