ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-supervised learning of class embeddings from video

175   0   0.0 ( 0 )
 نشر من قبل Olivia Wiles
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work explores how to use self-supervised learning on videos to learn a class-specific image embedding that encodes pose and shape information. At train time, two frames of the same video of an object class (e.g. human upper body) are extracted and each encoded to an embedding. Conditioned on these embeddings, the decoder network is tasked to transform one frame into another. To successfully perform long range transformations (e.g. a wrist lowered in one image should be mapped to the same wrist raised in another), we introduce a hierarchical probabilistic network decoder model. Once trained, the embedding can be used for a variety of downstream tasks and domains. We demonstrate our approach quantitatively on three distinct deformable object classes -- human full bodies, upper bodies, faces -- and show experimentally that the learned embeddings do indeed generalise. They achieve state-of-the-art performance in comparison to other self-supervised methods trained on the same datasets, and approach the performance of fully supervised methods.



قيم البحث

اقرأ أيضاً

We propose a self-supervised approach for learning representations and robotic behaviors entirely from unlabeled videos recorded from multiple viewpoints, and study how this representation can be used in two robotic imitation settings: imitating obje ct interactions from videos of humans, and imitating human poses. Imitation of human behavior requires a viewpoint-invariant representation that captures the relationships between end-effectors (hands or robot grippers) and the environment, object attributes, and body pose. We train our representations using a metric learning loss, where multiple simultaneous viewpoints of the same observation are attracted in the embedding space, while being repelled from temporal neighbors which are often visually similar but functionally different. In other words, the model simultaneously learns to recognize what is common between different-looking images, and what is different between similar-looking images. This signal causes our model to discover attributes that do not change across viewpoint, but do change across time, while ignoring nuisance variables such as occlusions, motion blur, lighting and background. We demonstrate that this representation can be used by a robot to directly mimic human poses without an explicit correspondence, and that it can be used as a reward function within a reinforcement learning algorithm. While representations are learned from an unlabeled collection of task-related videos, robot behaviors such as pouring are learned by watching a single 3rd-person demonstration by a human. Reward functions obtained by following the human demonstrations under the learned representation enable efficient reinforcement learning that is practical for real-world robotic systems. Video results, open-source code and dataset are available at https://sermanet.github.io/imitate
Our objective is to transform a video into a set of discrete audio-visual objects using self-supervised learning. To this end, we introduce a model that uses attention to localize and group sound sources, and optical flow to aggregate information ove r time. We demonstrate the effectiveness of the audio-visual object embeddings that our model learns by using them for four downstream speech-oriented tasks: (a) multi-speaker sound source separation, (b) localizing and tracking speakers, (c) correcting misaligned audio-visual data, and (d) active speaker detection. Using our representation, these tasks can be solved entirely by training on unlabeled video, without the aid of object detectors. We also demonstrate the generality of our method by applying it to non-human speakers, including cartoons and puppets.Our model significantly outperforms other self-supervised approaches, and obtains performance competitive with methods that use supervised face detection.
We propose a self-supervised framework for learning facial attributes by simply watching videos of a human face speaking, laughing, and moving over time. To perform this task, we introduce a network, Facial Attributes-Net (FAb-Net), that is trained t o embed multiple frames from the same video face-track into a common low-dimensional space. With this approach, we make three contributions: first, we show that the network can leverage information from multiple source frames by predicting confidence/attention masks for each frame; second, we demonstrate that using a curriculum learning regime improves the learned embedding; finally, we demonstrate that the network learns a meaningful face embedding that encodes information about head pose, facial landmarks and facial expression, i.e. facial attributes, without having been supervised with any labelled data. We are comparable or superior to state-of-the-art self-supervised methods on these tasks and approach the performance of supervised methods.
In medical image analysis, the cost of acquiring high-quality data and their annotation by experts is a barrier in many medical applications. Most of the techniques used are based on supervised learning framework and need a large amount of annotated data to achieve satisfactory performance. As an alternative, in this paper, we propose a self-supervised learning approach to learn the spatial anatomical representations from the frames of magnetic resonance (MR) video clips for the diagnosis of knee medical conditions. The pretext model learns meaningful spatial context-invariant representations. The downstream task in our paper is a class imbalanced multi-label classification. Different experiments show that the features learnt by the pretext model provide explainable performance in the downstream task. Moreover, the efficiency and reliability of the proposed pretext model in learning representations of minority classes without applying any strategy towards imbalance in the dataset can be seen from the results. To the best of our knowledge, this work is the first work of its kind in showing the effectiveness and reliability of self-supervised learning algorithms in class imbalanced multi-label classification tasks on MR video. The code for evaluation of the proposed work is available at https://github.com/sadimanna/sslm
Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to col lect and can be scarce for medical imaging applications. Therefore, there is significant interest in learning representations from unlabelled raw data. In this paper, we propose a self-supervised learning approach to learn meaningful and transferable representations from medical imaging video without any type of human annotation. We assume that in order to learn such a representation, the model should identify anatomical structures from the unlabelled data. Therefore we force the model to address anatomy-aware tasks with free supervision from the data itself. Specifically, the model is designed to correct the order of a reshuffled video clip and at the same time predict the geometric transformation applied to the video clip. Experiments on fetal ultrasound video show that the proposed approach can effectively learn meaningful and strong representations, which transfer well to downstream tasks like standard plane detection and saliency prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا