ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of the $epsilon$-Expansion, Lagrange Inversion and Associahedra and the $O(1)$ Model

82   0   0.0 ( 0 )
 نشر من قبل Thomas A. Ryttov
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Thomas A. Ryttov




اسأل ChatGPT حول البحث

We discuss properties of the $epsilon$-expansion in $d=4-epsilon$ dimensions. Using Lagrange inversion we write down an exact expression for the value of the Wilson-Fisher fixed point coupling order by order in $epsilon$ in terms of the beta function coefficients. The $epsilon$-expansion is combinatoric in the sense that the Wilson-Fisher fixed point coupling at each order depends on the beta function coefficients via Bell polynomials. Using certain properties of Lagrange inversion we then argue that the $epsilon$-expansion of the Wilson-Fisher fixed point coupling equally well can be viewed as a geometric expansion which is controlled by the facial structure of associahedra. We then write down an exact expression for the value of anomalous dimensions at the Wilson-Fisher fixed point order by order in $epsilon$ in terms of the coefficients of the beta function and anomalous dimensions. We finally use our general results to compute the values for the Wilson-fisher fixed point coupling and critical exponents for the scalar $O(1)$ symmetric model to $O(epsilon^7)$.

قيم البحث

اقرأ أيضاً

330 - M. Yu. Kalmykov 2007
We continue the study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we show the following results: Theorem A: The multiple (inverse) bi nomial sums of arbitrary weight and depth (see Eq. (1.1)) are expressible in terms of Remiddi-Vermaseren functions. Theorem B: The epsilon expansion of a hypergeometric function with one half-integer value of parameter (see Eq. (1.2)) is expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with coefficients that are ratios of polynomials. Some extra materials are available via the www at this http://theor.jinr.ru/~kalmykov/hypergeom/hyper.html
108 - Wenliang Li 2021
We study the Ising model in $d=2+epsilon$ dimensions using the conformal bootstrap. As a minimal-model Conformal Field Theory (CFT), the critical Ising model is exactly solvable at $d=2$. The deformation to $d=2+epsilon$ with $epsilonll 1$ furnishes a relatively simple system at strong coupling outside of even dimensions. At $d=2+epsilon$, the scaling dimensions and correlation function coefficients receive $epsilon$-dependent corrections. Using numerical and analytical conformal bootstrap methods in Lorentzian signature, we rule out the possibility that the leading corrections are of order $epsilon^{1}$. The essential conflict comes from the $d$-dependence of conformal symmetry, which implies the presence of new states. A resolution is that there exist corrections of order $epsilon^{1/k}$ where $k>1$ is an integer. The linear independence of conformal blocks plays a central role in our analyses. Since our results are not derived from positivity constraints, this bootstrap approach can be extended to the rigorous studies of non-positive systems, such as non-unitary, defect/boundary and thermal CFTs.
385 - M. Yu. Kalmykov 2008
We review the hypergeometric function approach to Feynman diagrams. Special consideration is given to the construction of the Laurent expansion. As an illustration, we describe a collection of physically important one-loop vertex diagrams for which this approach is useful.
We study the scaling dimension $Delta_{phi^n}$ of the operator $phi^n$ where $phi$ is the fundamental complex field of the $U(1)$ model at the Wilson-Fisher fixed point in $d=4-varepsilon$. Even for a perturbatively small fixed point coupling $lambda _*$, standard perturbation theory breaks down for sufficiently large $lambda_*n$. Treating $lambda_* n$ as fixed for small $lambda_*$ we show that $Delta_{phi^n}$ can be successfully computed through a semiclassical expansion around a non-trivial trajectory, resulting in $$ Delta_{phi^n}=frac{1}{lambda_*}Delta_{-1}(lambda_* n)+Delta_{0}(lambda_* n)+lambda_* Delta_{1}(lambda_* n)+ldots $$ We explicitly compute the first two orders in the expansion, $Delta_{-1}(lambda_* n)$ and $Delta_{0}(lambda_* n)$. The result, when expanded at small $lambda_* n$, perfectly agrees with all available diagrammatic computations. The asymptotic at large $lambda_* n$ reproduces instead the systematic large charge expansion, recently derived in CFT. Comparison with Monte Carlo simulations in $d=3$ is compatible with the obvious limitations of taking $varepsilon=1$, but encouraging.
37 - Marco Frasca 2007
We show that Green function methods can be straightforwardly applied to nonlinear equations appearing as the leading order of a short time expansion. Higher order corrections can be then computed giving a satisfactory agreement with numerical results . The relevance of these results relies on the possibility of fully exploiting a gradient expansion in both classical and quantum field theory granting the existence of a strong coupling expansion. Having a Green function in this regime in quantum field theory amounts to obtain the corresponding spectrum of the theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا