ﻻ يوجد ملخص باللغة العربية
We discuss properties of the $epsilon$-expansion in $d=4-epsilon$ dimensions. Using Lagrange inversion we write down an exact expression for the value of the Wilson-Fisher fixed point coupling order by order in $epsilon$ in terms of the beta function coefficients. The $epsilon$-expansion is combinatoric in the sense that the Wilson-Fisher fixed point coupling at each order depends on the beta function coefficients via Bell polynomials. Using certain properties of Lagrange inversion we then argue that the $epsilon$-expansion of the Wilson-Fisher fixed point coupling equally well can be viewed as a geometric expansion which is controlled by the facial structure of associahedra. We then write down an exact expression for the value of anomalous dimensions at the Wilson-Fisher fixed point order by order in $epsilon$ in terms of the coefficients of the beta function and anomalous dimensions. We finally use our general results to compute the values for the Wilson-fisher fixed point coupling and critical exponents for the scalar $O(1)$ symmetric model to $O(epsilon^7)$.
We continue the study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we show the following results: Theorem A: The multiple (inverse) bi
We study the Ising model in $d=2+epsilon$ dimensions using the conformal bootstrap. As a minimal-model Conformal Field Theory (CFT), the critical Ising model is exactly solvable at $d=2$. The deformation to $d=2+epsilon$ with $epsilonll 1$ furnishes
We review the hypergeometric function approach to Feynman diagrams. Special consideration is given to the construction of the Laurent expansion. As an illustration, we describe a collection of physically important one-loop vertex diagrams for which this approach is useful.
We study the scaling dimension $Delta_{phi^n}$ of the operator $phi^n$ where $phi$ is the fundamental complex field of the $U(1)$ model at the Wilson-Fisher fixed point in $d=4-varepsilon$. Even for a perturbatively small fixed point coupling $lambda
We show that Green function methods can be straightforwardly applied to nonlinear equations appearing as the leading order of a short time expansion. Higher order corrections can be then computed giving a satisfactory agreement with numerical results