ﻻ يوجد ملخص باللغة العربية
We study the spectral analysis and the scattering theory for time evolution operators of position-dependent quantum walks. Our main purpose of this paper is construction of generalized eigenfunctions of the time evolution operator. Roughly speaking, the generalized eigenfunctions are not square summable but belong to $ell^{infty}$-space on ${bf Z}$. Moreover, we derive a characterization of the set of generalized eigenfunctions in view of the time-harmonic scattering theory. Thus we show that the S-matrix associated with the quantum walk appears in the singularity expansion of generalized eigenfunctions.
We consider the time-independent scattering theory for time evolution operators of one-dimensional two-state quantum walks. The scattering matrix associated with the position-dependent quantum walk naturally appears in the asymptotic behavior at spat
We construct a distorted Fourier transformation associated with the multi-dimensional quantum walk. In order to avoid the complication of notations, almost all of our arguments are restricted to two dimensional quantum walks (2DQWs) without loss of g
Bounds on the exponential decay of generalized eigenfunctions of bounded and unbounded selfadjoint Jacobi matrices are established. Two cases are considered separately: (i) the case in which the spectral parameter lies in a general gap of the spectru
We propose a quantum walk defined by digraphs (mixed graphs). This is like Grover walk that is perturbed by a certain complex-valued function defined by digraphs. The discriminant of this quantum walk is a matrix that is a certain normalization of ge
We study large time behavior of quantum walks (QWs) with self-dependent (nonlinear) coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estim