ﻻ يوجد ملخص باللغة العربية
Bollobas and Nikiforov [J. Combin. Theory, Ser. B. 97 (2007) 859--865] conjectured the following. If $G$ is a $K_{r+1}$-free graph on at least $r+1$ vertices and $m$ edges, then $lambda^2_1(G)+lambda^2_2(G)leq frac{r-1}{r}cdot2m$, where $lambda_1(G)$ and $lambda_2(G)$ are the largest and the second largest eigenvalues of the adjacency matrix $A(G)$, respectively. In this paper, we confirm the conjecture in the case $r=2$, by using tools from doubly stochastic matrix theory, and also characterize all families of extremal graphs. Motivated by classic theorems due to ErdH{o}s and Nosal respectively, we prove that every non-bipartite graph $G$ of order $n$ and size $m$ contains a triangle, if one of the following is true: (1) $lambda_1(G)geqsqrt{m-1}$ and $G eq C_5cup (n-5)K_1$; and (2) $lambda_1(G)geq lambda_1(S(K_{lfloorfrac{n-1}{2}rfloor,lceilfrac{n-1}{2}rceil}))$ and $G eq S(K_{lfloorfrac{n-1}{2}rfloor,lceilfrac{n-1}{2}rceil})$, where $S(K_{lfloorfrac{n-1}{2}rfloor,lceilfrac{n-1}{2}rceil})$ is obtained from $K_{lfloorfrac{n-1}{2}rfloor,lceilfrac{n-1}{2}rceil}$ by subdividing an edge. Both conditions are best possible. We conclude this paper with some open problems.
A theory of orientation on gain graphs (voltage graphs) is developed to generalize the notion of orientation on graphs and signed graphs. Using this orientation scheme, the line graph of a gain graph is studied. For a particular family of gain graphs
Let $G$ be a graph of order $n$ with an edge-coloring $c$, and let $delta^c(G)$ denote the minimum color-degree of $G$. A subgraph $F$ of $G$ is called rainbow if any two edges of $F$ have distinct colors. There have been a lot results in the existin
Let $G_1$ and $G_2$ be two simple connected graphs. The invariant textit{coronal} of graph is used in order to determine the $alpha$-eigenvalues of four different types of graph equations that are $G_1 circ G_2, G_1lozenge G_1$ and the other two`s ar
We introduce a new approach and prove that the maximum number of triangles in a $C_5$-free graph on $n$ vertices is at most $$(1 + o(1)) frac{1}{3 sqrt 2} n^{3/2}.$$ We also show a connection to $r$-uniform hypergraphs without (Berge) cycles of lengt
For a real constant $alpha$, let $pi_3^alpha(G)$ be the minimum of twice the number of $K_2$s plus $alpha$ times the number of $K_3$s over all edge decompositions of $G$ into copies of $K_2$ and $K_3$, where $K_r$ denotes the complete graph on $r$ ve