ﻻ يوجد ملخص باللغة العربية
EC funded STriTuVaD project aims to test, through a phase IIb clinical trial, two of the most advanced therapeutic vaccines against tuberculosis. In parallel, we have extended the Universal Immune System Simulator to include all relevant determinants of such clinical trial, to establish its predictive accuracy against the individual patients recruited in the trial, to use it to generate digital patients and predict their response to the HRT being tested, and to combine them to the observations made on physical patients using a new in silico-augmented clinical trial approach that uses a Bayesian adaptive design. This approach, where found effective could drastically reduce the cost of innovation in this critical sector of public healthcare. One of the most challenging task is to develop a methodology to reproduce biological diversity of the subjects that have to be simulated, i.e., provide an appropriate strategy for the generation of libraries of digital patients. This has been achieved through the the creation of the initial immune system repertoire in a stochastic way, and though the identification of a vector of features that combines both biological and pathophysiological parameters that personalize the digital patient to reproduce the physiology and the pathophysiology of the subject.
Tuberculosis (TB) is one of the deadliest diseases worldwide, with 1,5 million fatalities every year along with potential devastating effects on society, families and individuals. To address this alarming burden, vaccines can play a fundamental role,
SARS-CoV-2 is a severe respiratory infection that infects humans. Its outburst entitled it as a pandemic emergence. To get a grip on this, outbreak specific preventive and therapeutic interventions are urgently needed. It must be said that, until now
Agent-Based Models are a powerful class of computational models widely used to simulate complex phenomena in many different application areas. However, one of the most critical aspects, poorly investigated in the literature, regards an important step
This article compares ten recently proposed neural networks and proposes two ensemble neural network-based models for blood glucose prediction. All of them are tested under the same dataset, preprocessing workflow, and tools using the OhioT1DM Datase
MPAgenomics, standing for multi-patients analysis (MPA) of genomic markers, is an R-package devoted to: (i) efficient segmentation, and (ii) genomic marker selection from multi-patient copy number and SNP data profiles. It provides wrappers from comm