ﻻ يوجد ملخص باللغة العربية
Electron-positron pair production from vacuum is studied in combined background fields, a binding electric potential well and a laser field. The production process is triggered by the interactions between the bound states in the potential well and the continuum states in the Dirac sea. By tuning the binding potential well, the pair production can be strongly affected by the locality of the bound states. The narrower bound states in position space are more efficient for pair production. This is in contrast to what is commonly expected that the wider extended bound states have larger region to interact with external fields and would thus create more particles. This surprise can be explained as the more localized bound states have a much wider extension in the momentum space, which can enhance the bound-continuum interactions in the creation process. This enhancement manifests itself in both perturbative and non-perturbative production regimes.
We study the penetration field $H_{rm P}$ for vortex nanocrystals nucleated in micron-sized samples with edges aligned along the nodal and anti-nodal directions of the d-wave superconducting parameter of Bi$_2$Sr$_2$CaCu$_2$O$_{8 - delta}$. Here we p
We prove an upper bound on the diffusivity of a general local and translation invariant quantum Markovian spin system: $D leq D_0 + left(alpha , v_text{LR} tau + beta , xi right) v_text{C}$. Here $v_text{LR}$ is the Lieb-Robinson velocity, $v_text{C}
We analyse here the pseudo-Hermitian Dynamical Casimir effect, proposing a non-Hermitian version of the effective Laws Hamiltonian used to describe the phenomenon. We verify that the average number of created photons can be substantially increased, a
Discrete lattice models are a cornerstone of quantum many-body physics. They arise as effective descriptions of condensed matter systems and lattice-regularized quantum field theories. Lieb-Robinson bounds imply that if the degrees of freedom at each
We report the first observations of beam losses due to bound-free pair production at the interaction point of a heavy-ion collider. This process is expected to be a major luminosity limit for the Large Hadron Collider (LHC) when it operates with 208P