ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of photon creation through the pseudo-Hermitian dynamical Casimir effect

101   0   0.0 ( 0 )
 نشر من قبل Danilo Cius
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse here the pseudo-Hermitian Dynamical Casimir effect, proposing a non-Hermitian version of the effective Laws Hamiltonian used to describe the phenomenon. We verify that the average number of created photons can be substantially increased, a result which calls the attention to the possibility of engineering the time-dependent non-Hermitian Hamiltonian we have assumed. Given the well-known difficulty in detecting the Casimir photon production, the present result reinforces the importance of pseudo-Hermitian quantum mechanics as a new chapter of quantum theory and an important tool for the amplification of Hermitian processes such as the degree of squeezing of quantum states.


قيم البحث

اقرأ أيضاً

145 - S. Salimi , A. Sorouri 2009
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.
We have briefly analyzed the existence of the pseudofermionic structure of multilevel pseudo-Hermitian systems with odd time-reversal and higher order involutive symmetries. We have shown that 2N-level Hamiltonians with N-order eigenvalue degeneracy can be represented in the oscillator-like form in terms of pseudofermionic creation and annihilation operators for both real and complex eigenvalues. The example of most general four-level traceless Hamiltonian with odd time-reversal symmetry, which is an extension of the SO(5) Hermitian Hamiltonian, is considered in greater and explicit detail.
159 - K. Lange , J. Peise , B. Lucke 2018
If the boundary conditions of the quantum vacuum are changed in time, quantum field theory predicts that real, observable particles can be created in the initially empty modes. Here, we realize this effect by changing the boundary conditions of a spi nor Bose-Einstein condensate, which yields a population of initially unoccupied spatial and spin excitations. We prove that the excitations are created as entangled excitation pairs by certifying continuous-variable entanglement within the many-particle output state.
231 - C. Yuce 2021
Distant boundaries in linear non-Hermitian lattices can dramatically change energy eigenvalues and corresponding eigenstates in a nonlocal way. This effect is known as non-Hermitian skin effect (NHSE). Combining non-Hermitian skin effect with nonline ar effects can give rise to a host of novel phenomenas, which may be used for nonlinear structure designs. Here we study nonlinear non-Hermitian skin effect and explore nonlocal and substantial effects of edges on stationary nonlinear solutions. We show that fractal and continuum bands arise in a long lattice governed by a nonreciprocal discrete nonlinear Schrodinger equation. We show that stationary solutions are localized at the edge in the continuum band. We consider a non-Hermitian Ablowitz-Ladik model and show that nonlinear exceptional point disappears if the lattice is infinitely long.
In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boun dary. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of the cavity boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا