ﻻ يوجد ملخص باللغة العربية
In this work the TFD formalism is explored in order to study a dissipative time-dependent thermal vacuum. This state is a consequence of a particular interaction between two theories, which can be interpreted as two conformal theories defined at the two asymptotic boundaries of an AdS black hole. The initial state is prepared to be the equilibrium TFD thermal vacuum. The interaction causes dissipation from the point of view of observers who measure observables in one of the boundaries. We show that the vacuum evolves as an entangled state at finite temperature and the dissipative dynamics is controlled by the time-dependent entropy operator, defined in the non-equilibrium TFD framework. We use lattice field theory techniques to calculate the non-equilibrium thermodynamic entropy and the finite temperature entanglement entropy. We show that both grow linearly with time.
In this work, a canonical method to compute entanglement entropy is proposed. We show that for two-dimensional conformal theories defined in a torus, a choice of moduli space allows the typical entropy operator of the TFD to provide the entanglement
We discuss and compute entanglement entropy (EE) in (1+1)-dimensional free Lifshitz scalar field theories with arbitrary dynamical exponents. We consider both the subinterval and periodic sublattices in the discretized theory as subsystems. In both c
We study holographic entanglement entropy in Gauss-Bonnet gravity following a global quench. It is known that in dynamical scenarios the entanglement entropy probe penetrates the apparent horizon. The goal of this work is to study how far behind the
We investigate holographic cosmologies appearing in the braneworld model with a uniformly distributed $p$-brane gas. When $p$-branes extend to the radial direction, an observer living in the brane detects $(p-1)$-dimensional extended objects. On this
We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting proble