ﻻ يوجد ملخص باللغة العربية
We investigate holographic cosmologies appearing in the braneworld model with a uniformly distributed $p$-brane gas. When $p$-branes extend to the radial direction, an observer living in the brane detects $(p-1)$-dimensional extended objects. On this background, we show that the braneworld model reproduces the expanding universes of the standard cosmology. In an expanding universe with a matter, we investigate the entanglement entropy between the visible and invisible universes across the cosmological (or particle) horizon. We show that, though the visible and invisible universes are causally disconnected, the nonlocal quantum correlation gives rise to a nontrivial time-dependent entanglement entropy relying on the matter.
We study holographic entanglement entropy in Gauss-Bonnet gravity following a global quench. It is known that in dynamical scenarios the entanglement entropy probe penetrates the apparent horizon. The goal of this work is to study how far behind the
We calculate the holographic entanglement entropy (HEE) of the $mathbb{Z}_k$ orbifold of Lin-Lunin-Maldacena (LLM) geometries which are dual to the vacua of the mass-deformed ABJM theory with Chern-Simons level $k$. By solving the partial differentia
We continue our study of entanglement entropy in the holographic superconducting phase transitions. In this paper we consider the holographic p-wave superconductor/insulator model, where as the back reaction increases, the transition is changed from
We study the holographic entanglement entropy under small deformations of AdS, including time-dependence. It is found through perturbative analysis that the divergent terms are not affected and the change appears only in the finite terms. We also con
We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductors. We employ a numerical approach to consider the robust case of fully back-reacted gravity system. The hairy black hole solution is found by usi