ﻻ يوجد ملخص باللغة العربية
We examine the combined effects of interlayer exchange coupling (IEC) and the interfacial Dzyaloshinskii-Moriya Interaction (DMI) on the structure of magnetic domain walls in fully compensated synthetic anti-ferromagnets (SAFs). Ir-based SAFs with ferromagnetic (FM) layers based on [Pt/(Co/Ni)M]N were characterized by Lorentz transmission electron microscopy (LTEM). The multi-layer design of the individual ferromagnetic layers enables control of the interfacial Dzyaloshinskii-Moriya interaction (via M) and, in turn, the structure and chirality of domain walls (DWs). We compare the Fresnel-mode LTEM images in SAF designs with only a change in the purported strength of the DMI. The existence of anti-ferromagnetically coupled Dzyaloshinskii domain walls (DWs) in a high DMI SAF is confirmed through application of in-situ perpendicular magnetic field and sample tilt. This conclusion is based on a unique set of conditions required to observe contrast in Fresnel-mode LTEM, which we outline in this document.
It is well documented that subjecting perpendicular magnetic films which exhibit the interfacial Dzyaloshinskii-Moriya interaction (DMI) to an in-plane magnetic field results in a domain wall (DW) energy, $sigma$, that is highly anisotropic with resp
We show that chiral symmetry breaking enables traveling domain wall solution for the conservative Landau-Lifshitz equation of a uniaxial ferromagnet with Dzyaloshinskii-Moriya interaction. In contrast to related domain wall models including stray-fie
For antiferromagnetically coupled Fe/Cr multilayers the low field contribution to the resistivity, which is caused by the domain walls, is strongly enhanced at low temperatures. The low temperature resistivity varies according to a power law with the
Antiferromagnetic materials are outstanding candidates for next generation spintronic applications, because their ultrafast spin dynamics makes it possible to realize several orders of magnitude higher-speed devices than conventional ferromagnetic ma
We present a quantitative and comparative study of magnetic field driven domain wall depinning transition in different ferromagnetic ultrathin films over a wide range of temperature. We reveal a universal scaling function accounting for both drive an