ترغب بنشر مسار تعليمي؟ اضغط هنا

Bone Material Analogues for PET/MRI Phantoms

244   0   0.0 ( 0 )
 نشر من قبل Peder Larson
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: To develop bone material analogues that can be used in construction of phantoms for simultaneous PET/MRI systems. Methods: Plaster was used as the basis for the bone material analogues tested in this study. It was mixed with varying concentrations of an iodinated CT contrast, a gadolinium-based MR contrast agent, and copper sulfate to modulate the attenuation properties and MRI properties (T1 and T2*). Attenuation was measured with CT and 68Ge transmission scans, and MRI properties were measured with quantitative ultrashort echo time pulse sequences. A proof-of-concept skull was created by plaster casting. Results: Undoped plaster has a 511 keV attenuation coefficient (~0.14 cm-1) similar to cortical bone (0.10-0.15 cm-1), but slightly longer T1 (~500 ms) and T2* (~1.2 ms) MR parameters compared to bone (T1 ~ 300 ms, T2* ~ 0.4 ms). Doping with the iodinated agent resulted in increased attenuation with minimal perturbation to the MR parameters. Doping with a gadolinium chelate greatly reduced T1 and T2*, resulting in extremely short T1 values when the target T2* values were reached, while the attenuation coefficient was unchanged. Doping with copper sulfate was more selective for T2* shortening and achieved comparable T1 and T2* values to bone (after 1 week of drying), while the attenuation coefficient was unchanged. Conclusions: Plaster doped with copper sulfate is a promising bone material analogue for a PET/MRI phantom, mimicking the MR properties (T1 and T2*) and 511 keV attenuation coefficient of human cortical bone.

قيم البحث

اقرأ أيضاً

409 - Alexander Hunold 2018
Physical head phantoms allow assessing source reconstruction procedures in electroencephalography and electrical stimulation profiles during transcranial electric stimulation. Volume conduction in the head is strongly influenced by the skull represen ting the main conductivity barrier. Realistic modeling of its characteristics is thus important for phantom development. In the present study, we proposed plastic clay as a material for modeling the skull in phantoms. We analyzed five clay types varying in granularity and fractions of fireclay, each with firing temperatures from 550 {deg}C to 950 {deg}C. We investigated the conductivity of standardized clay samples when immersed in a 0.9% sodium chloride solution with time-resolved four-point impedance measurements. To test the reusability of the clay model, these measurements were repeated after cleaning the samples by rinsing in deionized water for 5 h. We found time-dependent impedance changes for approximately 5 min after immersion in the solution. Thereafter, the conductivities stabilized between 0.0716 S/m and 0.0224 S/m depending on clay type and firing temperatures. The reproducibility of the measurement results proved the effectiveness of the rinsing procedure. Clay provides formability, is permeable for ions, can be adjusted in conductivity value and is thus suitable for the skull modeling in phantoms.
Objective: Accurate estimation of SAR is critical to safeguarding vulnerable patients who require an MRI procedure. The increased static field strength and RF duty cycle capabilities in modern MRI scanners mean that systems can easily exceed safe SAR levels for patients. Advisory protocols routinely used to establish quality assurance protocols are not required to advise on the testing of MRI SAR levels and is not routinely measured in annual medical physics quality assurance checks. This study aims to develop a head phantom and protocol that can independently verify global SAR for MRI clinical scanners. Methods: A four-channel birdcage head coil was used for RF transmission and signal reception. Proton resonance shift thermometry was used to estimate SAR. The SAR estimates were verified by comparing results against two other independent measures, then applied to a further four scanners at field strengths of 1.5 T and 3 T. Results: Scanner output SAR values ranged from 0.42 to 1.52 W/kg. Percentage SAR differences between independently estimated values and those calculated by the scanners differed by 0-2.3%. Conclusion: We have developed a quality assurance protocol to independently verify the SAR output of MRI scanners.
MultiModal Imaging is an innovative technique that consists in the combination of diagnostic exams based on different physical processes, to obtain a unique image with more detailed clinical information. The possibility of a simultaneous use of PET a nd MRI could be achieved by using a particular radioisotope: 52gMn. The main route to produce this isotope is the reaction 52Cr(p,n)52gMn which is theoretically investigated in this study by means of three nuclear reaction codes. An analysis of the cross sections and a computation of the production rates and time evolution of the produced radioisotopes are performed, to identify the optimal production parameters. The procedure described for this reaction has a general validity and is applied also to other reactions, such as 52Cr(d,2n)52gMn and natV(alpha,x)52gMn.
Prostate cancer is the most common disease in men and the second leading cause of death from cancer. Generic large imaging instruments used in cancer diagnosis have sensitivity, spatial resolution, and contrast inadequate for the task of imaging deta ils of a small organ such as the prostate. In addition, multimodality imaging can play a significant role merging anatomical and functional details coming from simultaneous PET and MRI. Indeed, multi-parametric PET/MRI was demonstrated to improve diagnosis, but it suffers from too many false positives. In order to address the above limits of the current techniques, we have proposed, built and tested, thanks to the TOPEM project funded by Italian National Institute of Nuclear Phisics a prototype of an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry, performance is dominated by a high-resolution detector placed closer to the source. The expected spatial resolution in the selected geometry is about 1.5 mm FWHM and efficiency a factor of 2 with respect to what obtained with the conventional PET scanner. In our experimental studies, we have obtained timing resolution of ~ 320 ps FWHM and at the same time Depth of Interaction (DOI) resolution of under 1 mm. Tests also showed that mutual adverse PET-MR effects are minimal. In addition, the matching endorectal RF coil was designed, built and tested. In the next planned studies, we expect that benefiting from the further progress in scintillator crystal surface treatment, in SiPM technology and associated electronics would allow us to significantly improve TOF resolution
It was demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with ultraviolet (UV) light, enabling radical-free dissolution DNP. Although pyruvate is endogenous, an excess of addi tional pyruvate may perturb metabolic processes, making it potentially unsuitable as a polarizing agent when studying fatty acids or carbohydrate metabolism. Therefore, the aim of the study was to characterize solutions containing endogenously-occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (AKV) and alpha-ketobutyrate (AKB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing AKV and AKB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with ESR and compared to pyruvate. The addition of 13C labeled substrates to the sample matrix altered the radical yield of the precursors. Using AKB increased the 13C-labeled glucose liquid state polarization to 16.3 +/- 1.3% compared with 13.3 +/- 1.5% obtained with pyruvate, and 8.9 +/- 2.1% with AKV. For [1-13C]butyric acid, polarization levels of 12.1 +/- 1.1% for AKV and 12.9 +/- 1.7% for AKB were achieved. Hyperpolarized [1-13C]butyrate metabolism in the heart revealed label incorporation into [1-13C]acetylcarnitine, [1-13C]acetoacetate, [1-13C]butyrylcarnitine, [5-13C]glutamate and [5-13C]citrate. This study demonstrates the potential of AKV and AKB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا