ﻻ يوجد ملخص باللغة العربية
In this paper we consider the following problem: Let $X_k$, be a Banach space with a normalized basis $(e_{(k,j)})_j$, whose biorthogonals are denoted by $(e_{(k,j)}^*)_j$, for $kinmathbb{N}$, let $Z=ell^infty(X_k:kinmathbb{N})$ be their $ell^infty$-sum, and let $T:Zto Z$ be a bounded linear operator, with a large diagonal, i.e. $$inf_{k,j} big|e^*_{(k,j)}(T(e_{(k,j)})big|>0.$$ Under which condition does the identity on $Z$ factor through $T$? The purpose of this paper is to formulate general conditions for which the answer is positive.
We show that the non-separable Banach space $SL^infty$ is primary. This is achieved by directly solving the infinite dimensional factorization problem in $SL^infty$. In particular, we bypass Bourgains localization method.
The unique maximal ideal in the Banach algebra $L(E)$, $E = (oplus ell^infty(n))_{ell^1}$, is identified. The proof relies on techniques developed by Laustsen, Loy and Read and a dichotomy result for operators mapping into $L^1$ due to Laustsen, Odell, Schlumprecht and Zs{a}k.
We show that every subsymmetric Schauder basis $(e_j)$ of a Banach space $X$ has the factorization property, i.e. $I_X$ factors through every bounded operator $Tcolon Xto X$ with a $delta$-large diagonal (that is $inf_j |langle Te_j, e_j^*rangle| geq
We introduce the concept of strategically reproducible bases in Banach spaces and show that operators which have large diagonal with respect to strategically reproducible bases are factors of the identity. We give several examples of classical Banach
Let $D$ be an integral domain. A nonzero nonunit $a$ of $D$ is called a valuation element if there is a valuation overring $V$ of $D$ such that $aVcap D=aD$. We say that $D$ is a valuation factorization domain (VFD) if each nonzero nonunit of $D$ can