ﻻ يوجد ملخص باللغة العربية
The unique maximal ideal in the Banach algebra $L(E)$, $E = (oplus ell^infty(n))_{ell^1}$, is identified. The proof relies on techniques developed by Laustsen, Loy and Read and a dichotomy result for operators mapping into $L^1$ due to Laustsen, Odell, Schlumprecht and Zs{a}k.
In this paper we consider the following problem: Let $X_k$, be a Banach space with a normalized basis $(e_{(k,j)})_j$, whose biorthogonals are denoted by $(e_{(k,j)}^*)_j$, for $kinmathbb{N}$, let $Z=ell^infty(X_k:kinmathbb{N})$ be their $ell^infty$-
If alpha and beta are countable ordinals such that beta eq 0, denote by tilde{T}_{alpha,beta} the completion of $c_{00}$ with respect to the implicitly defined norm ||x|| = max{||x||_{c_{0}}, 1/2 sup sum_{i=1}^{j}||E_{i}x||}, where the supremum is t
Suppose that (F_n)_{n=0}^{infty} is a sequence of regular families of finite subsets of N such that F_0 contains all singletons, and (theta _n)_{n=1}^{infty} is a nonincreasing null sequence in (0,1). In this paper, we compute the Bourgain ell^1 - in
We investigate an infinite, linear system of ordinary differential equations that models the evolution of fragmenting clusters. We assume that each cluster is composed of identical units (monomers) and we allow mass to be lost, gained or conserved du
Suppose that (F_n)_{n=1}^{infty} is a sequence of regular families of finite subsets of N and (theta_n)_{n=1}^{infty} is a nonincreasing null sequence in (0,1). The mixed Tsirelson space T[(theta_{n}, F_n)_{n=1}^{infty}] is the completion of $c_{00}$