ترغب بنشر مسار تعليمي؟ اضغط هنا

Candidate Brown-dwarf Microlensing Events with Very Short Timescales and Small Angular Einstein Radii

191   0   0.0 ( 0 )
 نشر من قبل Cheongho Han
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Short-timescale microlensing events are likely to be produced by substellar brown dwarfs (BDs), but it is difficult to securely identify BD lenses based on only event timescales $t_{rm E}$ because short-timescale events can also be produced by stellar lenses with high relative lens-source proper motions. In this paper, we report three strong candidate BD-lens events found from the search for lensing events not only with short timescales ($t_{rm E} lesssim 6~{rm days}$) but also with very small angular Einstein radii ($theta_{rm E}lesssim 0.05~{rm mas}$) among the events that have been found in the 2016--2019 observing seasons. These events include MOA-2017-BLG-147, MOA-2017-BLG-241, and MOA-2019-BLG-256, in which the first two events are produced by single lenses and the last event is produced by a binary lens. From the Bayesian analysis conducted with the combined $t_{rm E}$ and $theta_{rm E}$ constraint, it is estimated that the lens masses of the individual events are $0.051^{+0.100}_{-0.027}~M_odot$, $0.044^{+0.090}_{-0.023}~M_odot$, and $0.046^{+0.067}_{-0.023}~M_odot/0.038^{+0.056}_{-0.019}~M_odot$ and the probability of the lens mass smaller than the lower limit of stars is $sim 80%$ for all events. We point out that routine lens mass measurements of short time-scale lensing events require survey-mode space-based observations.



قيم البحث

اقرأ أيضاً

309 - Y. K. Jung , A. Udalski , T. Sumi 2014
We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{rm max}s im 1.5$. It is found that the event was produced by a binary lens with a mass ratio between the components of $q = 0.13$ and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are $M_{1} = 0.096 pm 0.013~M_{odot}$ and $M_{2} = 0.012 pm 0.002~M_{odot}$, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is $3.04 pm 0.31~{rm kpc}$ and the projected separation between the lens components is $0.80 pm 0.08~{rm AU}$.
140 - Bo Ma , Jian Ge , Rory Barnes 2012
We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T_eff = 5903+/-42 K, surface gravity log (g) = 4.07+/-0.16 (cgs), and metallicity [Fe/H] = -0.23+/-0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K=3.571+/-0.041 km/s, period P=9.0090+/-0.0004 days, and eccentricity e=0.226+/-0.011. Adopting a mass of 1.16+/-0.11 Msun for the subgiant host star, we infer that the companion has a minimum mass of 40.0+/-2.5 M_Jup. Assuming an edge-on orbit, the semimajor axis is 0.090+/-0.003 AU. The host star is photometrically variable at the sim1% level with a period of sim13.16+/-0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643+/-10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 Msun if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v_{rot}*sin i, but unusual for a subgiant of this T_eff. This activity could be explained by ongoing tidal spin-up of the host star by the companion.
Studying the accretion process in very low-mass objects has important implications for understanding their formation mechanism. Many nearby late-M dwarfs that have previously been identified in the field are in fact young brown dwarf members of nearb y young associations. Some of them are still accreting. They are therefore excellent targets for further studies of the accretion process in the very low-mass regime at different stages. We aim to search for accreting young brown dwarf candidates in a sample of 85 nearby late-M dwarfs. Using photometric data from DENIS, 2MASS, and WISE, we constructed the spectral energy distribution of the late-M dwarfs based on BT-Settl models to detect infrared excesses. We then searched for lithium and H$alpha$ emission in candidates that exhibit infrared excesses to confirm their youth and the presence of accretion. Among the 85 late-M dwarfs, only DENIS-P J1538317$-$103850 (M5.5) shows strong infrared excesses in WISE bands. The detection of lithium absorption in the M5.5 dwarf and its Gaia trigonometric parallax indicate an age of $sim$1 Myr and a mass of 47 $M_{rm J}$. The H$alpha$ emission line in the brown dwarf shows significant variability that indicates sporadic accretion. This 1 Myr-old brown dwarf also exhibits intense accretion bursts with accretion rates of up to $10^{-7.9}$$M_{odot}$ yr$^{-1}$. Our detection of sporadic accretion in one of the youngest brown dwarfs might imply that sporadic accretion at early stages could play an important role in the formation of brown dwarfs. Very low-mass cores would not be able to accrete enough material to become stars, and thus they end up as brown dwarfs.
146 - Philip W. Lucas 2010
We report the discovery of a very cool, isolated brown dwarf, UGPS 0722-05, with the UKIDSS Galactic Plane Survey. The near-infrared spectrum displays deeper H2O and CH4 troughs than the coolest known T dwarfs and an unidentified absorption feature a t 1.275 um. We provisionally classify the object as a T10 dwarf but note that it may in future come to be regarded as the first example of a new spectral type. The distance is measured by trigonometric parallax as d=4.1{-0.5}{+0.6} pc, making it the closest known isolated brown dwarf. With the aid of Spitzer/IRAC we measure H-[4.5] = 4.71. It is the coolest brown dwarf presently known -- the only known T dwarf that is redder in H-[4.5] is the peculiar T7.5 dwarf SDSS J1416+13B, which is thought to be warmer and more luminous than UGPS 0722-05. Our measurement of the luminosity, aided by Gemini/T-ReCS N band photometry, is L = 9.2 +/- 3.1x10^{-7} Lsun. Using a comparison with well studied T8.5 and T9 dwarfs we deduce Teff=520 +/- 40 K. This is supported by predictions of the Saumon & Marley models. With apparent magnitude J=16.52, UGPS 0722-05 is the brightest T dwarf discovered by UKIDSS so far. It offers opportunities for future study via high resolution near-infrared spectroscopy and spectroscopy in the thermal infrared.
We report the discovery of two transiting brown dwarfs (BDs), TOI-811b and TOI-852b, from NASAs Transiting Exoplanet Survey Satellite mission. These two transiting BDs have similar masses, but very different radii and ages. Their host stars have simi lar masses, effective temperatures, and metallicities. The younger and larger transiting BD is TOI-811b at a mass of $M_b = 55.3 pm 3.2{rm M_J}$ and radius of $R_b = 1.35 pm 0.09{rm R_J}$ and it orbits its host star in a period of $P = 25.16551 pm 0.00004$ days. Its age of $93^{+61}_{-29}$ Myr, which we derive from an application of gyrochronology to its host star, is why this BDs radius is relatively large, not heating from its host star since this BD orbits at a longer orbital period than most known transiting BDs. This constraint on the youth of TOI-811b allows us to test substellar mass-radius isochrones where the radius of BDs changes rapidly with age. TOI-852b is a much older (4.0 Gyr from stellar isochrone models of the host star) and smaller transiting BD at a mass of $M_b = 53.7 pm 1.3{rm M_J}$, a radius of $R_b = 0.75 pm 0.03{rm R_J}$, and an orbital period of $P = 4.94561 pm 0.00008$ days. TOI-852b joins the likes of other old transiting BDs that trace out the oldest substellar mass-radius isochrones where contraction of the BDs radius asymptotically slows. Both host stars have a mass of $M_star = 1.32{rm M_odot}pm0.05$ and differ in their radii, $T_{rm eff}$, and [Fe/H] with TOI-811 having $R_star=1.27pm0.09{rm R_odot}$, $T_{rm eff} = 6107 pm 77$K, and $rm [Fe/H] = +0.40 pm 0.09$ and TOI-852 having $R_star=1.71pm0.04{rm R_odot}$, $T_{rm eff} = 5768 pm 84$K, and $rm [Fe/H] = +0.33 pm 0.09$. We take this opportunity to examine how TOI-811b and TOI-852b serve as test points for young and old substellar isochrones, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا