ﻻ يوجد ملخص باللغة العربية
Topic modeling is widely studied for the dimension reduction and analysis of documents. However, it is formulated as a difficult optimization problem. Current approximate solutions also suffer from inaccurate model- or data-assumptions. To deal with the above problems, we propose a polynomial-time deep topic model with no model and data assumptions. Specifically, we first apply multilayer bootstrap network (MBN), which is an unsupervised deep model, to reduce the dimension of documents, and then use the low-dimensional data representations or their clustering results as the target of supervised Lasso for topic word discovery. To our knowledge, this is the first time that MBN and Lasso are applied to unsupervised topic modeling. Experimental comparison results with five representative topic models on the 20-newsgroups and TDT2 corpora illustrate the effectiveness of the proposed algorithm.
We propose a topic modeling approach to the prediction of preferences in pairwise comparisons. We develop a new generative model for pairwise comparisons that accounts for multiple shared latent rankings that are prevalent in a population of users. T
We propose networked exponential families to jointly leverage the information in the topology as well as the attributes (features) of networked data points. Networked exponential families are a flexible probabilistic model for heterogeneous datasets
The record-breaking performance of deep neural networks (DNNs) comes with heavy parameterization, leading to external dynamic random-access memory (DRAM) for storage. The prohibitive energy of DRAM accesses makes it non-trivial to deploy DNN on resou
We apply the network Lasso to classify partially labeled data points which are characterized by high-dimensional feature vectors. In order to learn an accurate classifier from limited amounts of labeled data, we borrow statistical strength, via an in
Least Absolute Shrinkage and Selection Operator or the Lasso, introduced by Tibshirani (1996), is a popular estimation procedure in multiple linear regression when underlying design has a sparse structure, because of its property that it sets some re