ترغب بنشر مسار تعليمي؟ اضغط هنا

Topics in gravity SCET: the diff Wilson lines and reparametrization invariance

46   0   0.0 ( 0 )
 نشر من قبل Sabyasachi Chakraborty
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two topics in soft collinear effective theory (SCET) for gravitational interactions are explored. First, the collinear Wilson lines---necessary building blocks for maintaining multiple copies of diffeomorphism invariance in gravity SCET---are extended to all orders in the SCET expansion parameter $lambda$, where it has only been known to $O(lambda)$ in the literature. Second, implications of reparametrization invariance (RPI) for the structure of gravity SCET lagrangians are studied. The utility of RPI is illustrated by an explicit example in which $O(lambda^2)$ hard interactions of a collinear graviton are completely predicted by RPI from its $O(lambda)$ hard interactions. It is also pointed out that the multiple diffeomorphism invariances and RPI together require certain relations among $O(lambda)$ terms, thereby reducing the number of $O(lambda)$ terms that need to be fixed by matching onto the full theory in the first place.



قيم البحث

اقرأ أيضاً

We show how Einstein-Cartan gravity can accommodate both global scale and local scale (Weyl) invariance. To this end, we construct a wide class of models with nonpropagaing torsion and a nonminimally coupled scalar field. In phenomenological applicat ions the scalar field is associated with the Higgs boson. For global scale invariance, an additional field --- dilaton --- is needed to make the theory phenomenologically viable. In the case of the Weyl symmetry, the dilaton is spurious and the theory reduces to a sub-class of one-field models. In both scenarios of scale invariance, we derive an equivalent metric theory and discuss possible implications for phenomenology.
We construct local probes in the static patch of Euclidean dS$_3$ gravity. These probes are Wilson line operators, designed by exploiting the Chern-Simons formulation of 3D gravity. Our prescription uses non-unitary representations of $so(4)simeq su( 2)_Ltimes su(2)_R$, and we evaluate the Wilson line for states satisfying a singlet condition. We discuss how to reproduce the Greens functions of massive scalar fields in dS$_3$, the construction of bulk fields, and the quasinormal mode spectrum. We also discuss the interpretation of our construction in Lorentzian signature in the inflationary patch, via $SL(2,mathbb{C})$ Chern-Simons theory.
103 - I. Antoniadis 2007
These lectures present some topics of string phenomenology and contain two parts. In the first part, I review the possibility of lowering the string scale in the TeV region, that provides a theoretical framework for solving the mass hierarchy problem and unifying all interactions. The apparent weakness of gravity can then be accounted by the existence of large internal dimensions, in the submillimeter region, and transverse to a braneworld where our universe must be confined. I review the main properties of this scenario and its implications for observations at both particle colliders, and in non-accelerator gravity experiments. In the second part, I discuss a simple framework of toroidal string models with magnetized branes, that offers an interesting self-consistent setup for string phenomenology. I will present an algorithm for fixing the geometric parameters of the compactification, build calculable particle physics models such as a supersymmetric SU(5) Grand Unified Theory with three generations of quarks and leptons, and implement low energy supersymmetry breaking with gauge mediation that can be studied directly at the string level.
We present a detailed analysis of the construction of $z=2$ and $z eq2$ scale invariant Hov{r}ava-Lifshitz gravity. The construction procedure is based on the realization of Hov{r}ava-Lifshitz gravity as the dynamical Newton-Cartan geometry as well a s a non-relativistic tensor calculus in the presence of the scale symmetry. An important consequence of this method is that it provides us the necessary mechanism to distinguish the local scale invariance from the local Schrodinger invariance. Based on this result we discuss the $z=2$ scale invariant Hov{r}ava-Lifshitz gravity and the symmetry enhancement to the full Schrodinger group.
We show how uncertainty in the causal structure of field theory is essentially inevitable when one includes quantum gravity. This includes the fact that lightcones are ill-defined in such a theory - independent of the UV completion of the theory. We include details of the causality uncertainty which arises in theories of quadratic gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا