ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical Quantum Optimization with Neural Network Quantum States

145   0   0.0 ( 0 )
 نشر من قبل Joseph Gomes
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The classical simulation of quantum systems typically requires exponential resources. Recently, the introduction of a machine learning-based wavefunction ansatz has led to the ability to solve the quantum many-body problem in regimes that had previously been intractable for existing exact numerical methods. Here, we demonstrate the utility of the variational representation of quantum states based on artificial neural networks for performing quantum optimization. We show empirically that this methodology achieves high approximation ratio solutions with polynomial classical computing resources for a range of instances of the Maximum Cut (MaxCut) problem whose solutions have been encoded into the ground state of quantum many-body systems up to and including 256 qubits.

قيم البحث

اقرأ أيضاً

Neural quantum states (NQS) attract a lot of attention due to their potential to serve as a very expressive variational ansatz for quantum many-body systems. Here we study the main factors governing the applicability of NQS to frustrated magnets by t raining neural networks to approximate ground states of several moderately-sized Hamiltonians using the corresponding wavefunction structure on a small subset of the Hilbert space basis as training dataset. We notice that generalization quality, i.e. the ability to learn from a limited number of samples and correctly approximate the target state on the rest of the space, drops abruptly when frustration is increased. We also show that learning the sign structure is considerably more difficult than learning amplitudes. Finally, we conclude that the main issue to be addressed at this stage, in order to use the method of NQS for simulating realistic models, is that of generalization rather than expressibility.
333 - Jiaxin Wu , Wenjuan Zhang 2019
Solving ground states of quantum many-body systems has been a long-standing problem in condensed matter physics. Here, we propose a new unsupervised machine learning algorithm to find the ground state of a general quantum many-body system utilizing t he benefits of artificial neural network. Without assuming the specific forms of the eigenvectors, this algorithm can find the eigenvectors in an unbiased way with well controlled accuracy. As examples, we apply this algorithm to 1D Ising and Heisenberg models, where the results match very well with exact diagonalization.
We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid gr ound states, b) critical and ordered Neel states on bipartite infinite Cayley trees and c) critical and ordered quantum vector spin glass states on random graphs of fixed connectivity. We argue, in consonance with a previous analysis, that all phases are characterized by gaps to local excitations. The spin glass states we report arise from random long ranged loops which frustrate Neel ordering despite the lack of randomness in the coupling strengths.
The many-body localization (MBL) transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from extended/ergodic (exhibiting extensive entanglement entropies and fluctuat ions) to localized (exhibiting area-law scaling of entanglement and fluctuations). The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using quantum-quench spectroscopy, namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.
199 - Heiko Burau , Markus Heyl 2020
In this work we combine quantum renormalization group approaches with deep artificial neural networks for the description of the real-time evolution in strongly disordered quantum matter. We find that this allows us to accurately compute the long-tim e coherent dynamics of large, many-body localized systems in non-perturbative regimes including the effects of many-body resonances. Concretely, we use this approach to describe the spatiotemporal buildup of many-body localized spin glass order in random Ising chains. We observe a fundamental difference to a non-interacting Anderson insulating Ising chain, where the order only develops over a finite spatial range. We further apply the approach to strongly disordered two-dimensional Ising models highlighting that our method can be used also for the description of the real-time dynamics of nonergodic quantum matter in a general context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا