ترغب بنشر مسار تعليمي؟ اضغط هنا

Opinion aspect extraction in Dutch childrens diary entries

48   0   0.0 ( 0 )
 نشر من قبل Maaike De Boer
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Aspect extraction can be used in dialogue systems to understand the topic of opinionated text. Expressing an empathetic reaction to an opinion can strengthen the bond between a human and, for example, a robot. The aim of this study is three-fold: 1. create a new annotated dataset for both aspect extraction and opinion words for Dutch childrens language, 2. acquire aspect extraction results for this task and 3. improve current results for aspect extraction in Dutch reviews. This was done by training a deep learning Gated Recurrent Unit (GRU) model, originally developed for an English review dataset, on Dutch restaurant review data to classify both opinion words and their respective aspects. We obtained state-of-the-art performance on the Dutch restaurant review dataset. Additionally, we acquired aspect extraction results for the Dutch childrens dataset. Since the model was trained on standardised language, these results are quite promising.



قيم البحث

اقرأ أيضاً

Aspect Sentiment Triplet Extraction (ASTE) aims to extract aspect term, sentiment and opinion term triplets from sentences and tries to provide a complete solution for aspect-based sentiment analysis (ABSA). However, some triplets extracted by ASTE a re confusing, since the sentiment in a triplet extracted by ASTE is the sentiment that the sentence expresses toward the aspect term rather than the sentiment of the aspect term and opinion term pair. In this paper, we introduce a more fine-grained Aspect-Sentiment-Opinion Triplet Extraction (ASOTE) Task. ASOTE also extracts aspect term, sentiment and opinion term triplets. However, the sentiment in a triplet extracted by ASOTE is the sentiment of the aspect term and opinion term pair. We build four datasets for ASOTE based on several popular ABSA benchmarks. We propose a Position-aware BERT-based Framework (PBF) to address this task. PBF first extracts aspect terms from sentences. For each extracted aspect term, PBF first generates aspect term-specific sentence representations considering both the meaning and the position of the aspect term, then extracts associated opinion terms and predicts the sentiments of the aspect term and opinion term pairs based on the sentence representations. Experimental results on the four datasets show the effectiveness of PBF.
Aspect-level sentiment classification (ALSC) and aspect oriented opinion words extraction (AOWE) are two highly relevant aspect-based sentiment analysis (ABSA) subtasks. They respectively aim to detect the sentiment polarity and extract the correspon ding opinion words toward a given aspect in a sentence. Previous works separate them and focus on one of them by training neural models on small-scale labeled data, while neglecting the connections between them. In this paper, we propose a novel joint model, Opinion Transmission Network (OTN), to exploit the potential bridge between ALSC and AOWE to achieve the goal of facilitating them simultaneously. Specifically, we design two tailor-made opinion transmission mechanisms to control opinion clues flow bidirectionally, respectively from ALSC to AOWE and AOWE to ALSC. Experiment results on two benchmark datasets show that our joint model outperforms strong baselines on the two tasks. Further analysis also validates the effectiveness of opinion transmission mechanisms.
Aspect Sentiment Triplet Extraction (ASTE) aims to extract triplets from a sentence, including target entities, associated sentiment polarities, and opinion spans which rationalize the polarities. Existing methods are short on building correlation be tween target-opinion pairs, and neglect the mutual interference among different sentiment triplets. To address these issues, we propose a novel two-stage method which enhances the correlation between targets and opinions: at stage one, we extract targets and opinions through sequence tagging; then we insert a group of artificial tags named Perceivable Pair, which indicate the span of the target and the opinion, into the sequence to establish correlation for each candidate target-opinion pair. Meanwhile, we reduce the mutual interference between triplets by restricting tokens attention field. Finally, the polarity is identified according to the representation of the Perceivable Pair. We conduct experiments on four datasets, and the experimental results show that our model outperforms the state-of-the-art methods.
103 - Bo Wang , Tao Shen , Guodong Long 2021
Aspect-level sentiment classification (ALSC) aims at identifying the sentiment polarity of a specified aspect in a sentence. ALSC is a practical setting in aspect-based sentiment analysis due to no opinion term labeling needed, but it fails to interp ret why a sentiment polarity is derived for the aspect. To address this problem, recent works fine-tune pre-trained Transformer encoders for ALSC to extract an aspect-centric dependency tree that can locate the opinion words. However, the induced opinion words only provide an intuitive cue far below human-level interpretability. Besides, the pre-trained encoder tends to internalize an aspects intrinsic sentiment, causing sentiment bias and thus affecting model performance. In this paper, we propose a span-based anti-bias aspect representation learning framework. It first eliminates the sentiment bias in the aspect embedding by adversarial learning against aspects prior sentiment. Then, it aligns the distilled opinion candidates with the aspect by span-based dependency modeling to highlight the interpretable opinion terms. Our method achieves new state-of-the-art performance on five benchmarks, with the capability of unsupervised opinion extraction.
In aspect-based sentiment analysis, most existing methods either focus on aspect/opinion terms extraction or aspect terms categorization. However, each task by itself only provides partial information to end users. To generate more detailed and struc tured opinion analysis, we propose a finer-grained problem, which we call category-specific aspect and opinion terms extraction. This problem involves the identification of aspect and opinion terms within each sentence, as well as the categorization of the identified terms. To this end, we propose an end-to-end multi-task attention model, where each task corresponds to aspect/opinion terms extraction for a specific category. Our model benefits from exploring the commonalities and relationships among different tasks to address the data sparsity issue. We demonstrate its state-of-the-art performance on three benchmark datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا