ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Hall magnetoresistance sensor using Au$_x$Pt$_{1-x}$ as the spin-orbit torque biasing layer

127   0   0.0 ( 0 )
 نشر من قبل Yanjun Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on investigation of spin Hall magnetoresistance sensor based on NiFe/AuxPt1-x bilayers. Compared to NiFe/Pt, the NiFe/AuxPt1-x sensor exhibits a much lower power consumption (reduced by about 57%), due to 80% enhancement of spin-orbit torque efficiency of AuxPt1-x at an optimum composition of x = 0.19 as compared to pure Pt. The enhanced spin-orbit torque efficiency allows to increase the thickness of NiFe from 1.8 nm to 2.5 nm without significantly increasing the power consumption. We show that, by increasing the NiFe thickness, we were able to improve the working field range (0.86 Oe), operation temperature range (150 degree C) and detectivity (0.71 nT/sqrt(Hz) at 1 Hz) of the sensor, which is important for practical applications.



قيم البحث

اقرأ أيضاً

280 - Yumeng Yang , Yanjun Xu , Hang Xie 2017
We demonstrate an ultrathin and semitransparent anisotropic and spin Hall magnetoresistance sensor based on NiFe/Pt heterostructure. The use of spin-orbit torque effective field for transverse biasing allows to reduce the total thickness of the senso rs down to 3 - 4 nm and thereby leading to the semitransparency. Despite the extremely simple design, the spin-orbit torque effective field biased NiFe/Pt sensor exhibits level of linearity and sensitivity comparable to those of sensors using more complex linearization schemes. In a proof-of-concept design using a full Wheatstone bridge comprising of four sensing elements, we obtained a sensitivity up to 202.9 m{Omega}/Oe, linearity error below 5%, and a detection limit down to 20 nT. The transmittance of the sensor is over 50% in the visible range.
Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly non-linear properties governing robust mutual synchronization at freq uencies directly amenable to high-speed neuromorphic computing. However, all demonstrations have relied on localized SW modes interacting through dipolar coupling and/or direct exchange. As nanomagnonics requires propagating SWs for data transfer, and additional computational functionality can be achieved using SW interference, SOT driven propagating SWs would be highly advantageous. Here, we demonstrate how perpendicular magnetic anisotropy can raise the frequency of SOT driven auto-oscillations in magnetic nano-constrictions well above the SW gap, resulting in the efficient generation of field and current tunable propagating SWs. Our demonstration greatly extends the functionality and design freedom of SHNOs enabling long range SOT driven SW propagation for nanomagnonics, SW logic, and neuro-morphic computing, directly compatible with CMOS technology.
Reducing energy dissipation while increasing speed in computation and memory is a long-standing challenge for spintronics research. In the last 20 years, femtosecond lasers have emerged as a tool to control the magnetization in specific magnetic mate rials at the picosecond timescale. However, the use of ultrafast optics in integrated circuits and memories would require a major paradigm shift. An ultrafast electrical control of the magnetization is far preferable for integrated systems. Here we demonstrate reliable and deterministic control of the out-of-plane magnetization of a 1 nm-thick Co layer with single 6 ps-wide electrical pulses that induce spin-orbit torques on the magnetization. We can monitor the ultrafast magnetization dynamics due to the spin-orbit torques on sub-picosecond timescales, thus far accessible only by numerical simulations. Due to the short duration of our pulses, we enter a counter-intuitive regime of switching where heat dissipation assists the reversal. Moreover, we estimate a low energy cost to switch the magnetization, projecting to below 1fJ for a (20 nm)^3 cell. These experiments prove that spintronic phenomena can be exploited on picosecond time-scales for full magnetic control and should launch a new regime of ultrafast spin torque studies and applications.
We report very efficient spin current generation by the spin Hall effect in the alloy Au0.25Pt0.75, which, as determined by two different direct spin-orbit torque measurements, exhibits a giant internal spin Hall ratio of > 0.58 (anti-damping spin-or bit torque efficiency of ~ 0.35 in bilayers with Co), a relatively low resistivity of ~ 83 uOhm cm, an exceptionally large spin Hall conductivity of > 7.0x10^5 ohm^-1 m^-1, and a spin diffusion length of 1.7 nm. This work establishes Au0.25Pt0.75 as a milestone spin current generator that provides greater energy efficiency than that yet obtained with other heavy metals or with the topological insulators Bi2Se3 and (Bi,Se)2Te3. Our findings should advance spin-orbit torque-based fundamental research and benefit the development of new fast, efficient spin-orbit torque-driven magnetic memories, skyrmion and chiral domain wall devices, and microwave and terahertz emitters.
This paper introduces the concept of spin-orbit-torque-MRAM (SOT-MRAM) based physical unclonable function (PUF). The secret of the PUF is stored into a random state of a matrix of perpendicular SOT-MRAMs. Here, we show experimentally and with microma gnetic simulations that this random state is driven by the intrinsic nonlinear dynamics of the free layer of the memory excited by the SOT. In detail, a large enough current drives the magnetization along an in-plane direction. Once the current is removed, the in-plane magnetic state becomes unstable evolving towards one of the two perpendicular stable configurations randomly. In addition, an hybrid CMOS/spintronics model is used to evaluate the electrical characteristics of a PUF realized with an array of 16x16 SOT-MRAM cells. Beyond robustness against voltage and temperature variations, hardware authentication based on this PUF scheme has additional advantages over other PUF technologies such as non-volatility (no power consumption in standby mode), reconfigurability (the secret can be rewritten), and scalability. We believe that this work is a step forward the design of spintronic devices for application in security.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا