ﻻ يوجد ملخص باللغة العربية
In this work we predict vehicle speed and steering angle given camera image frames. Our key contribution is using an external pre-trained neural network for segmentation. We augment the raw images with their segmentation masks and mirror images. We ensemble three diverse neural network models (i) a CNN using a single image and its segmentation mask, (ii) a stacked CNN taking as input a sequence of images and segmentation masks, and (iii) a bidirectional GRU, extracting image features using a pre-trained ResNet34, DenseNet121 and our own CNN single image model. We achieve the second best performance for MSE angle and second best performance overall, to win 2nd place in the ICCV Learning to Drive challenge. We make our models and code publicly available.
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions. While numerous methods for detecting, segmenting and tracking of medical instruments based on endoscopic video images have be
We present a simple method that achieves unexpectedly superior performance for Complex Reasoning involved Visual Question Answering. Our solution collects statistical features from high-frequency words of all the questions asked about an image and us
Seamlessly blending features from multiple images is extremely challenging because of complex relationships in lighting, geometry, and partial occlusion which cause coupling between different parts of the image. Even though recent work on GANs enable
This report summarizes IROS 2019-Lifelong Robotic Vision Competition (Lifelong Object Recognition Challenge) with methods and results from the top $8$ finalists (out of over~$150$ teams). The competition dataset (L)ifel(O)ng (R)obotic V(IS)ion (OpenL
To better understand early brain growth patterns in health and disorder, it is critical to accurately segment infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). Deep learning-based met