ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Partial Differential Equations from Data Using Neural Networks

123   0   0.0 ( 0 )
 نشر من قبل Ali Hasan
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a framework for estimating unknown partial differential equations from noisy data, using a deep learning approach. Given noisy samples of a solution to an unknown PDE, our method interpolates the samples using a neural network, and extracts the PDE by equating derivatives of the neural network approximation. Our method applies to PDEs which are linear combinations of user-defined dictionary functions, and generalizes previous methods that only consider parabolic PDEs. We introduce a regularization scheme that prevents the function approximation from overfitting the data and forces it to be a solution of the underlying PDE. We validate the model on simulated data generated by the known PDEs and added Gaussian noise, and we study our method under different levels of noise. We also compare the error of our method with a Cramer-Rao lower bound for an ordinary differential equation. Our results indicate that our method outperforms other methods in estimating PDEs, especially in the low signal-to-noise regime.

قيم البحث

اقرأ أيضاً

We describe a neural-based method for generating exact or approximate solutions to differential equations in the form of mathematical expressions. Unlike other neural methods, our system returns symbolic expressions that can be interpreted directly. Our method uses a neural architecture for learning mathematical expressions to optimize a customizable objective, and is scalable, compact, and easily adaptable for a variety of tasks and configurations. The system has been shown to effectively find exact or approximate symbolic solutions to various differential equations with applications in natural sciences. In this work, we highlight how our method applies to partial differential equations over multiple variables and more complex boundary and initial value conditions.
In this paper we establish a connection between non-convex optimization methods for training deep neural networks and nonlinear partial differential equations (PDEs). Relaxation techniques arising in statistical physics which have already been used s uccessfully in this context are reinterpreted as solutions of a viscous Hamilton-Jacobi PDE. Using a stochastic control interpretation allows we prove that the modified algorithm performs better in expectation that stochastic gradient descent. Well-known PDE regularity results allow us to analyze the geometry of the relaxed energy landscape, confirming empirical evidence. The PDE is derived from a stochastic homogenization problem, which arises in the implementation of the algorithm. The algorithms scale well in practice and can effectively tackle the high dimensionality of modern neural networks.
Recently, researchers have utilized neural networks to accurately solve partial differential equations (PDEs), enabling the mesh-free method for scientific computation. Unfortunately, the network performance drops when encountering a high nonlinearit y domain. To improve the generalizability, we introduce the novel approach of employing multi-task learning techniques, the uncertainty-weighting loss and the gradients surgery, in the context of learning PDE solutions. The multi-task scheme exploits the benefits of learning shared representations, controlled by cross-stitch modules, between multiple related PDEs, which are obtainable by varying the PDE parameterization coefficients, to generalize better on the original PDE. Encouraging the network pay closer attention to the high nonlinearity domain regions that are more challenging to learn, we also propose adversarial training for generating supplementary high-loss samples, similarly distributed to the original training distribution. In the experiments, our proposed methods are found to be effective and reduce the error on the unseen data points as compared to the previous approaches in various PDE examples, including high-dimensional stochastic PDEs.
194 - Wenbo Cao , Weiwei Zhang 2020
Machine learning of partial differential equations from data is a potential breakthrough to solve the lack of physical equations in complex dynamic systems, but because numerical differentiation is ill-posed to noise data, noise has become the bigges t obstacle in the application of partial differential equation identification method. To overcome this problem, we propose Frequency Domain Identification method based on Fourier transforms, which effectively eliminates the influence of noise by using the low frequency component of frequency domain data to identify partial differential equations in frequency domain. We also propose a new sparse identification criterion, which can accurately identify the terms in the equation from low signal-to-noise ratio data. Through identifying a variety of canonical equations spanning a number of scientific domains, the proposed method is proved to have high accuracy and robustness for equation structure and parameters identification for low signal-to-noise ratio data. The method provides a promising technique to discover potential partial differential equations from noisy experimental data.
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs. However, recent numerical solvers require manual discretization of the underlying equation as well a s sophisticated, tailored code for distributed computing. Scanning the parameters of the underlying model significantly increases the runtime as the simulations have to be cold-started for each parameter configuration. Machine Learning based surrogate models denote promising ways for learning complex relationship among input, parameter and solution. However, recent generative neural networks require lots of training data, i.e. full simulation runs making them costly. In contrast, we examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs) solely requiring initial/boundary values and validation points for training but no simulation data. The induced curse of dimensionality is approached by learning a domain decomposition that steers the number of neurons per unit volume and significantly improves runtime. Distributed training on large-scale cluster systems also promises great utilization of large quantities of GPUs which we assess by a comprehensive evaluation study. Finally, we discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا