ﻻ يوجد ملخص باللغة العربية
We present a new framework for computing low frequency transport properties of strongly correlated, ergodic systems. Our main assumption is that, when a thermalizing diffusive system is driven at frequency $omega$, domains of size $xi simsqrt{D/omega}$ can be considered as internally thermal, but weakly coupled with each other. We calculate the transport coefficients to lowest order in the coupling, assuming incoherent transport between such domains. Our framework naturally captures the sub-leading non analytic corrections to the transport coefficients, known as hydrodynamic long time tails. In addition, it allows us to obtain a generalized relation between charge and thermal transport coefficients, in the spirit of the Wiedemann-Franz law. We verify our results, which satisfy several non-trivial consistency checks, via exact diagonalization studies on the one-dimensional extended Fermi-Hubbard model.
The eigenstate thermalization hypothesis (ETH) is a successful theory that provides sufficient criteria for ergodicity in quantum many-body systems. Most studies were carried out for Hamiltonians relevant for ultracold quantum gases and single-compon
We investigate a weak version of subsystem eigenstate thermalization hypothesis (ETH) for a two-dimensional large central charge conformal field theory by comparing the local equivalence of high energy state and thermal state of canonical ensemble. W
We introduce the dissipation-assisted operator evolution (DAOE) method for calculating transport properties of strongly interacting lattice systems in the high temperature regime. DAOE is based on evolving observables in the Heisenberg picture, and a
A profound quest of statistical mechanics is the origin of irreversibility - the arrow of time. New stimulants have been provided, thanks to unprecedented degree of control reached in experiments with isolated quantum systems and rapid theoretical de
Exact formulas for the Hall coefficient, modified Nernst coefficient, and thermal Hall coefficient of metals are derived from the Kubo formula. These coefficients depend exclusively on equilibrium (time independent) susceptibilities, which are signif