ترغب بنشر مسار تعليمي؟ اضغط هنا

A Locating Model for Pulmonary Tuberculosis Diagnosis in Radiographs

86   0   0.0 ( 0 )
 نشر من قبل Junyu Liu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Objective: We propose an end-to-end CNN-based locating model for pulmonary tuberculosis (TB) diagnosis in radiographs. This model makes full use of chest radiograph (X-ray) for its improved accessibility, reduced cost and high accuracy for TB disease. Methods: Several specialized improvements are proposed for detection task in medical field. A false positive (FP) restrictor head is introduced for FP reduction. Anchor-oriented network heads is proposed in the position regression section. An optimization of loss function is designed for hard example mining. Results: The experimental results show that when the threshold of intersection over union (IoU) is set to 0.3, the average precision (AP) of two test data sets provided by different hospitals reaches 0.9023 and 0.9332. Ablation experiments shows that hard example mining and change of regressor heads contribute most in this work, but FP restriction is necessary in a CAD diagnose system. Conclusion: The results prove the high precision and good generalization ability of our proposed model comparing to previous works. Significance: We first make full use of the feature extraction ability of CNNs in TB diagnostic field and make exploration in localization of TB, when the previous works focus on the weaker task of healthy-sick subject classification.



قيم البحث

اقرأ أيضاً

Purpose: To develop a machine learning model to classify the severity grades of pulmonary edema on chest radiographs. Materials and Methods: In this retrospective study, 369,071 chest radiographs and associated radiology reports from 64,581 (mean a ge, 51.71; 54.51% women) patients from the MIMIC-CXR chest radiograph dataset were included. This dataset was split into patients with and without congestive heart failure (CHF). Pulmonary edema severity labels from the associated radiology reports were extracted from patients with CHF as four different ordinal levels: 0, no edema; 1, vascular congestion; 2, interstitial edema; and 3, alveolar edema. Deep learning models were developed using two approaches: a semi-supervised model using a variational autoencoder and a pre-trained supervised learning model using a dense neural network. Receiver operating characteristic curve analysis was performed on both models. Results: The area under the receiver operating characteristic curve (AUC) for differentiating alveolar edema from no edema was 0.99 for the semi-supervised model and 0.87 for the pre-trained models. Performance of the algorithm was inversely related to the difficulty in categorizing milder states of pulmonary edema (shown as AUCs for semi-supervised model and pre-trained model, respectively): 2 versus 0, 0.88 and 0.81; 1 versus 0, 0.79 and 0.66; 3 versus 1, 0.93 and 0.82; 2 versus 1, 0.69 and 0.73; and, 3 versus 2, 0.88 and 0.63. Conclusion: Deep learning models were trained on a large chest radiograph dataset and could grade the severity of pulmonary edema on chest radiographs with high performance.
94 - Wei Wu , Xukun Li , Peng Du 2019
We developed a deep learning model-based system to automatically generate a quantitative Computed Tomography (CT) diagnostic report for Pulmonary Tuberculosis (PTB) cases.501 CT imaging datasets from 223 patients with active PTB were collected, and a nother 501 cases from a healthy population served as negative samples.2884 lesions of PTB were carefully labeled and classified manually by professional radiologists.Three state-of-the-art 3D convolution neural network (CNN) models were trained and evaluated in the inspection of PTB CT images. Transfer learning method was also utilized during this process. The best model was selected to annotate the spatial location of lesions and classify them into miliary, infiltrative, caseous, tuberculoma and cavitary types simultaneously.Then the Noisy-Or Bayesian function was used to generate an overall infection probability.Finally, a quantitative diagnostic report was exported.The results showed that the recall and precision rates, from the perspective of a single lesion region of PTB, were 85.9% and 89.2% respectively. The overall recall and precision rates,from the perspective of one PTB case, were 98.7% and 93.7%, respectively. Moreover, the precision rate of the PTB lesion type classification was 90.9%.The new method might serve as an effective reference for decision making by clinical doctors.
Tuberculosis (TB) is a top-10 cause of death worldwide. Though the WHO recommends chest radiographs (CXRs) for TB screening, the limited availability of CXR interpretation is a barrier. We trained a deep learning system (DLS) to detect active pulmona ry TB using CXRs from 9 countries across Africa, Asia, and Europe, and utilized large-scale CXR pretraining, attention pooling, and noisy student semi-supervised learning. Evaluation was on (1) a combined test set spanning China, India, US, and Zambia, and (2) an independent mining population in South Africa. Given WHO targets of 90% sensitivity and 70% specificity, the DLSs operating point was prespecified to favor sensitivity over specificity. On the combined test set, the DLSs ROC curve was above all 9 India-based radiologists, with an AUC of 0.90 (95%CI 0.87-0.92). The DLSs sensitivity (88%) was higher than the India-based radiologists (75% mean sensitivity), p<0.001 for superiority; and its specificity (79%) was non-inferior to the radiologists (84% mean specificity), p=0.004. Similar trends were observed within HIV positive and sputum smear positive sub-groups, and in the South Africa test set. We found that 5 US-based radiologists (where TB isnt endemic) were more sensitive and less specific than the India-based radiologists (where TB is endemic). The DLS also remained non-inferior to the US-based radiologists. In simulations, using the DLS as a prioritization tool for confirmatory testing reduced the cost per positive case detected by 40-80% compared to using confirmatory testing alone. To conclude, our DLS generalized to 5 countries, and merits prospective evaluation to assist cost-effective screening efforts in radiologist-limited settings. Operating point flexibility may permit customization of the DLS to account for site-specific factors such as TB prevalence, demographics, clinical resources, and customary practice patterns.
Tuberculosis is an infectious disease that is leading to the death of millions of people across the world. The mortality rate of this disease is high in patients suffering from immuno-compromised disorders. The early diagnosis of this disease can sav e lives and can avoid further complications. But the diagnosis of TB is a very complex task. The standard diagnostic tests still rely on traditional procedures developed in the last century. These procedures are slow and expensive. So this paper presents an automatic approach for the diagnosis of TB from posteroanterior chest x-rays. This is a two-step approach, where in the first step the lung regions are segmented from the chest x-rays using the graph cut method, and then in the second step the transfer learning of VGG16 combined with Bi-directional LSTM is used for extracting high-level discriminative features from the segmented lung regions and then classification is performed using a fully connected layer. The proposed model is evaluated using data from two publicly available databases namely Montgomery Country set and Schezien set. The proposed model achieved accuracy and sensitivity of 97.76%, 97.01% and 96.42%, 94.11% on Schezien and Montgomery county datasets. This model enhanced the diagnostic accuracy of TB by 0.7% and 11.68% on Schezien and Montgomery county datasets.
Deep learning has demonstrated radiograph screening performances that are comparable or superior to radiologists. However, recent studies show that deep models for thoracic disease classification usually show degraded performance when applied to exte rnal data. Such phenomena can be categorized into shortcut learning, where the deep models learn unintended decision rules that can fit the identically distributed training and test set but fail to generalize to other distributions. A natural way to alleviate this defect is explicitly indicating the lesions and focusing the model on learning the intended features. In this paper, we conduct extensive retrospective experiments to compare a popular thoracic disease classification model, CheXNet, and a thoracic lesion detection model, CheXDet. We first showed that the two models achieved similar image-level classification performance on the internal test set with no significant differences under many scenarios. Meanwhile, we found incorporating external training data even led to performance degradation for CheXNet. Then, we compared the models internal performance on the lesion localization task and showed that CheXDet achieved significantly better performance than CheXNet even when given 80% less training data. By further visualizing the models decision-making regions, we revealed that CheXNet learned patterns other than the target lesions, demonstrating its shortcut learning defect. Moreover, CheXDet achieved significantly better external performance than CheXNet on both the image-level classification task and the lesion localization task. Our findings suggest improving annotation granularity for training deep learning systems as a promising way to elevate future deep learning-based diagnosis systems for clinical usage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا