ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold dust and stellar emissions in dust-rich galaxies observed with ALMA: a challenge for SED-fitting techniques

124   0   0.0 ( 0 )
 نشر من قبل Veronique Buat
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past few years ALMA has detected dust-rich galaxies whose cold dust emission is spatially disconnected from the UV rest-frame emission. This represents a challenge for modeling their spectral energy distributions with codes based on an energy budget between the stellar and dust components. We want to verify the validity of energy balance modeling on a sample of galaxies observed from the UV to the sub-millimeter rest frame with ALMA and decipher what information can be reliably retrieved from the analysis of the full SED and from subsets of wavelengths. We select 17 sources at z~2 in the Hubble Ultra-Deep Field and in the GOODS- South field detected with ALMA and Herschel and for which UV to NIR. rest-frame ancillary data are available. We fit the data with CIGALE exploring different configurations for dust attenuation and star formation histories, considering either the full dataset or one that is reduced to the stellar and dust emission. We compare estimates of the dust luminosities, star formation rates, and stellar masses. The fit of the stellar continuum alone with the starburst attenuation law can only reproduce up to 50% of the total dust luminosity observed by Herschel and ALMA. This deficit is found to be consistent with similar quantities estimated in the COSMOS field and is found to increase with the specific star formation rate. The combined stellar and dust SEDs are well fitted when different attenuation laws are introduced. Shallow attenuation curves are needed for the galaxies whose cold dust distribution is very compact compared to starlight. The stellar mass estimates are affected by the choice of the attenuation law. The star formation rates are robustly estimated as long as dust luminosities are available. The large majority of the galaxies are above the average main sequence of star forming galaxies and one source is a strong starburst.

قيم البحث

اقرأ أيضاً

We study the dust properties of 192 nearby galaxies from the JINGLE survey using photometric data in the 22-850micron range. We derive the total dust mass, temperature T and emissivity index beta of the galaxies through the fitting of their spectral energy distribution (SED) using a single modified black-body model (SMBB). We apply a hierarchical Bayesian approach that reduces the known degeneracy between T and beta. Applying the hierarchical approach, the strength of the T-beta anti-correlation is reduced from a Pearson correlation coefficient R=-0.79 to R=-0.52. For the JINGLE galaxies we measure dust temperatures in the range 17-30 K and dust emissivity indices beta in the range 0.6-2.2. We compare the SMBB model with the broken emissivity modified black-body (BMBB) and the two modified black-bodies (TMBB) models. The results derived with the SMBB and TMBB are in good agreement, thus applying the SMBB, which comes with fewer free parameters, does not penalize the measurement of the cold dust properties in the JINGLE sample. We investigate the relation between T and beta and other global galaxy properties in the JINGLE and Herschel Reference Survey (HRS) sample. We find that beta correlates with the stellar mass surface density (R=0.62) and anti-correlates with the HI mass fraction (M(HI)/M*, R=-0.65), whereas the dust temperature correlates strongly with the SFR normalized by the dust mass (R=0.73). These relations can be used to estimate T and beta in galaxies with insufficient photometric data available to measure them directly through SED fitting.
56 - Maarten Baes 2019
Modelling and interpreting the SEDs of galaxies has become one of the key tools at the disposal of extragalactic astronomers. Ideally, we could hope that, through a detailed study of its SED, we can infer the correct physical properties and the evolu tionary history of a galaxy. In the past decade, panchromatic SED fitting, i.e. modelling the SED over the entire UV-submm wavelength regime, has seen an enormous advance. Several advanced new codes have been developed, nearly all based on Bayesian inference modelling. In this review, we briefly touch upon the different ingredients necessary for panchromatic SED modelling, and discuss the methodology and some important aspects of Bayesian SED modelling. The current uncertainties and limitations of panchromatic SED modelling are discussed, and we explore some avenues how the models and techniques can potentially be improved in the near future.
The Planck and Herschel missions are currently measuring the farIR-mm emission of dust, which combined with existing IR data, will for the first time provide the full SED of the galactic ISM dust emission with an unprecedented sensitivity and angular resolution. It will allow a systematic study of the dust evolution processes that affect the SED. Here we present a versatile numerical tool, DustEM, that predicts the emission and extinction of dust given their size distribution and their optical and thermal properties. In order to model dust evolution, DustEM has been designed to deal with a variety of grain types, structures and size distributions and to be able to easily include new dust physics. We use DustEM to model the dust SED and extinction in the diffuse interstellar medium at high-galactic latitude (DHGL), a natural reference SED. We present a coherent set of observations for the DHGL SED. The dust components in our DHGL model are (i) PAHs, (ii) amorphous carbon and (iii) amorphous silicates. We use amorphous carbon dust, rather than graphite, because it better explains the observed high abundances of gas-phase carbon in shocked regions of the interstellar medium. Using the DustEM model, we illustrate how, in the optically thin limit, the IRAS/Planck HFI (and likewise Spitzer/Herschel for smaller spatial scales) photometric band ratios of the dust SED can disentangle the influence of the exciting radiation field intensity and constrain the abundance of small grains relative to the larger grains. We also discuss the contributions of the different grain populations to the IRAS, Planck and Herschel channels. Such information is required to enable a study of the evolution of dust as well as to systematically extract the dust thermal emission from CMB data and to analyze the emission in the Planck polarized channels. The DustEM code described in this paper is publically available.
The first Herschel Hi-Gal images of the galactic plane unveil the far-infrared diffuse emission of the interstellar medium with an unprecedented angular resolution and sensitivity. In this paper, we present the first analysis of these data in combina tion with that of Spitzer Glimpse & Mipsgal. We selected a relatively diffuse and low excitation region of the l~59,^{circ} Hi-Gal Science Demonstration Phase field to perform a pixel by pixel fitting of the 8 to 500 microns SED using the DustEM dust emission model. We derived maps of the Very Small Grains (VSG) and PAH abundances from the model. Our analysis allows us to illustrate that the Aromatic Infrared Bands (AIB) intensity does not trace necessarily the PAH abundance but rather the product of abundance x column density x intensity of the exciting radiation field. We show that the spatial structure of PACS70microns map resembles the shorter wavelengths (e.g. IRAC8microns) maps, because they trace both the intensity of exciting radiation field and column density. We also show that the modeled VSG contribution to PACS70microns (PACS160microns) band intensity can be up to 50% (7%). The interpretation of diffuse emission spectra at these wavelengths must take stochastically heated particles into account. Finally, this preliminary study emphasizes the potential of analyzing the full dust SED sampled by Herschel and Spitzer data, with a physical dust model (DustEM) to reach the properties of the dust at simultaneously large and small scales.
We revised the treatment of interstellar dust in the KOSMA-tau PDR model code to achieve a consistent description of the dust-related physics in the code. The detailed knowledge of the dust properties is then used to compute the dust continuum emissi on together with the line emission of chemical species. We coupled the KOSMA-tau PDR code with the MCDRT (multi component dust radiative transfer) code to solve the frequency-dependent radiative transfer equations and the thermal balance equation in a dusty clump under the assumption of spherical symmetry, assuming thermal equilibrium in calculating the dust temperatures, neglecting non-equilibrium effects. We updated the calculation of the photoelectric heating and extended the parametrization range for the photoelectric heating toward high densities and UV fields. We revised the computation of the H2 formation on grain surfaces to include the Eley-Rideal effect, thus allowing for high-temperature H2 formation. We demonstrate how the different optical properties, temperatures, and heating and cooling capabilities of the grains influence the physical and chemical structure of a model cloud. The most influential modification is the treatment of H2 formation on grain surfaces that allows for chemisorption. This increases the total H2 formation significantly and the connected H2 formation heating provides a profound heating contribution in the outer layers of the model clumps. The contribution of PAH surfaces to the photoelectric heating and H2 formation provides a boost to the temperature of outer cloud layers, which is clearly traced by high-J CO lines. Increasing the fraction of small grains in the dust size distribution results in hotter gas in the outer cloud layers caused by more efficient heating and cooler cloud centers, which is in turn caused by the more efficient FUV extinction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا