ﻻ يوجد ملخص باللغة العربية
The first Herschel Hi-Gal images of the galactic plane unveil the far-infrared diffuse emission of the interstellar medium with an unprecedented angular resolution and sensitivity. In this paper, we present the first analysis of these data in combination with that of Spitzer Glimpse & Mipsgal. We selected a relatively diffuse and low excitation region of the l~59,^{circ} Hi-Gal Science Demonstration Phase field to perform a pixel by pixel fitting of the 8 to 500 microns SED using the DustEM dust emission model. We derived maps of the Very Small Grains (VSG) and PAH abundances from the model. Our analysis allows us to illustrate that the Aromatic Infrared Bands (AIB) intensity does not trace necessarily the PAH abundance but rather the product of abundance x column density x intensity of the exciting radiation field. We show that the spatial structure of PACS70microns map resembles the shorter wavelengths (e.g. IRAC8microns) maps, because they trace both the intensity of exciting radiation field and column density. We also show that the modeled VSG contribution to PACS70microns (PACS160microns) band intensity can be up to 50% (7%). The interpretation of diffuse emission spectra at these wavelengths must take stochastically heated particles into account. Finally, this preliminary study emphasizes the potential of analyzing the full dust SED sampled by Herschel and Spitzer data, with a physical dust model (DustEM) to reach the properties of the dust at simultaneously large and small scales.
We use the SPIRE Fourier-Transform Spectrometer (FTS) on-board the ESA Herschel Space Telescope to analyse the submillimetre spectrum of the Ultra-compact HII region G29.96-0.02. Spectral lines from species including 13CO, CO, [CI], and [NII] are det
It is well known that aligned, aspherical dust grains emit polarized radiation and that the degree of polarization depends on the angle $psi$ between the interstellar magnetic field and the line of sight. However, anisotropy of the dust absorption cr
Ionized carbon is the main gas-phase reservoir of carbon in the neutral diffuse interstellar medium and its 158 micron fine structure transition [CII] is the most important cooling line of the diffuse interstellar medium (ISM). We combine [CII] absor
We present the first large scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([NII]) at 122 $mu$m and 205 $mu$m. The observations were largely obtained with the PACS
Radio recombination lines (RRLs) can be used to determine the emission measure unambiguously along the Galactic plane. We use the deep (2100s per beam) HI Parkes Zone of Avoidance survey which includes 3 RRLs (H$166alpha$, H$167alpha$ and H$168alpha$