ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement distribution between quantum repeater nodes with an absorptive type memory

104   0   0.0 ( 0 )
 نشر من قبل Daisuke Yoshida
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum repeaters, which are indispensable for long-distance quantum communication, are necessary for extending the entanglement from short distance to long distance; however, high-rate entanglement distribution, even between adjacent repeater nodes, has not been realized. In a recent work by C. Jones, et al., New J. Phys. 18, 083015 (2016), the entanglement distribution rate between adjacent repeater nodes was calculated for a plurality of quantum dots, nitrogen-vacancy centers in diamond, and trapped ions adopted as quantum memories inside the repeater nodes. Considering practical use, arranging a plurality of quantum memories becomes so difficult with the state-of-the art technology. It is desirable that high-rate entanglement distribution is realized with as few memory crystals as possible. Here we propose new entanglement distribution scheme with one quantum memory based on the atomic frequency comb which enables temporal multimode operation with one crystal. The adopted absorptive type quantum memory degrades the difficulty of multimode operation compared with previously investigated quantum memories directly generating spin-photon entanglement. It is shown that the present scheme improves the distribution rate by nearly two orders of magnitude compared with the result in C. Jones, et al., New J. Phys. 18, 083015 (2016) and the experimental implementation is close by utilizing state-of-the-art technology.

قيم البحث

اقرأ أيضاً

The potential impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable real-world imperfections necessitate means to improve remote entanglement by local quantum operations. Here we reali ze entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. We demonstrate the heralded generation of two copies of a remote entangled state through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. In addition, this distillation protocol significantly speeds up entanglement generation compared to previous two-photon-mediated schemes. The key combination of generating, storing and processing entangled states demonstrated here opens the door to exploring and utilizing multi-particle entanglement on an extended quantum network.
We demonstrate entanglement distribution between two remote quantum nodes located 3 meters apart. This distribution involves the asynchronous preparation of two pairs of atomic memories and the coherent mapping of stored atomic states into light fiel ds in an effective state of near maximum polarization entanglement. Entanglement is verified by way of the measured violation of a Bell inequality, and can be used for communication protocols such as quantum cryptography. The demonstrated quantum nodes and channels can be used as segments of a quantum repeater, providing an essential tool for robust long-distance quantum communication.
We propose a scheme to utilize photons for ideal quantum transmission between atoms located at spatially-separated nodes of a quantum network. The transmission protocol employs special laser pulses which excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wavepacket that will enter a cavity at the receiving node and be absorbed by an atom there with unit probability. Implementation of our scheme would enable reliable transfer or sharing of entanglement among spatially distant atoms.
We report entanglement swapping with time-bin entangled photon pairs, each constituted of a 795 nm photon and a 1533 nm photon, that are created via spontaneous parametric down conversion in a non-linear crystal. After projecting the two 1533 nm phot ons onto a Bell state, entanglement between the two 795 nm photons is verified by means of quantum state tomography. As an important feature, the wavelength and bandwidth of the 795 nm photons is compatible with Tm:LiNbO3-based quantum memories, making our experiment an important step towards the realization of a quantum repeater.
We propose a new approach to implement quantum repeaters for long distance quantum communication. Our protocol generates a backbone of encoded Bell pairs and uses the procedure of classical error correction during simultaneous entanglement connection . We illustrate that the repeater protocol with simple Calderbank-Shor-Steane (CSS) encoding can significantly extend the communication distance, while still maintaining a fast key generation rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا